Weierstrass semigroups on double covers
of plane curves of degree 7

Seon Jeong Kim・米田 二良
Weierstrass semigroups on double covers of plane curves of degree 7

Seon Jeong Kim¹, Jiryo Komeda²

¹ Department of Mathematics and RINS, Gyeongsang National University
² Center for Basic Education and Integrated Learning, Kanagawa Institute of Technology

Abstract

We investigate Weierstrass semigroups of ramification points on double covers of plane curves of degree 7. We treat the cases where the Weierstrass semigroups are generated by at most 5 elements and the ramification point is on a total flex.

Keywords: Numerical semigroup, Weierstrass semigroup, Plane curve, Double cover of a curve

1 Introduction

Let \(\mathbb{N}_0 \) be the additive monoid of non-negative integers. A submonoid \(H \) of \(\mathbb{N}_0 \) is called a numerical semigroup if the complement \(\mathbb{N}_0 \setminus H \) is a finite set. The cardinality of \(\mathbb{N}_0 \setminus H \) is said to be the genus of \(H \), which is denoted by \(g(H) \). Let \(C \) be a curve, which means a complete non-singular irreducible algebraic curve over an algebraically closed field \(k \) of characteristic 0 in this article. For a pointed curve \((C, P) \) of genus \(g \) we set

\[
H(P) = \{ h \in \mathbb{N}_0 \mid \text{there is a rational function } f \text{ on } C \text{ such that } (f)_\infty = hP \}
\]

where \((f)_\infty\) is the polar divisor of the function \(f \). Then \(H(P) \) becomes a numerical semigroup of genus \(g \). We call \(H(P) \) the Weierstrass semigroup of \(P \). A numerical semigroup \(H \) is said to be Weierstrass if there exists a pointed curve \((C, P) \) such that \(H = H(P) \). For any numerical semigroup \(H \) we define

\[
d_2(H) = \{ h \in \mathbb{N}_0 \mid 2h \in H \},
\]

that is to say, \(d_2(H) \) is the quotient of \(H \) by 2. Then \(d_2(H) \) is also a numerical semigroup. If \(\pi : \tilde{C} \to C \) is a double cover of a curve with a ramification point \(\tilde{P} \) over \(P \), then we have \(d_2(H(\tilde{P})) = H(P) \). Such a numerical semigroup \(H = H(\tilde{P}) \) is said to be of double covering type.

Let \(C \) be a smooth plane curve of degree \(d \geq 2 \) and \(P \) its total flex, i.e., \(\text{ord}_P C.T_P = d \) where \(T_P \) is the tangent line at \(P \) on \(C \) and \(\text{ord}_P C.T_P \) is the multiplicity at \(P \) of the intersection divisor \(C.T_P \) of \(C \) with \(T_P \). Then we have \(H(P) = \langle d - 1, d \rangle \) where for any positive integers \(a_1, \ldots, a_n \) we denote by \(\langle a_1, \ldots, a_n \rangle \) the additive monoid generated by \(a_1, \ldots, a_n \). Conversely, if \((C, P)\) is a pointed curve with \(H(P) = \langle d - 1, d \rangle \), \(d \geq 3 \), then \(C \) is a plane curve with total flex \(P \). In this article we are interested in the double covers \(\pi : \tilde{C} \to C \) of curves with ramification points on the points whose Weierstrass semigroups are \(\langle d - 1, d \rangle \). We pose the following problem:

TF Hurwitz Problem. Let \(d \) be a positive integer with \(d \geq 3 \). Let \(H \) be any numerical semigroup with \(d_2(H) = \langle d - 1, d \rangle \) with \(g(H) \geq \frac{3(d - 2)(d - 1)}{2} \). Then is \(H \) of double covering type?

In the above problem TF means total flexes. Under the assumption \(g(H) \geq \frac{3(d - 2)(d - 1)}{2} \) we can construct a double cover \(\pi : \tilde{C} \to C \) with a ramification point \(\tilde{P} \) over \(P \) for a pointed plane curve \((\tilde{C}, \tilde{P})\) with \(H(\tilde{P}) = \langle d - 1, d \rangle \). But
we cannot prove that \(H(P) = H \). TF Hurwitz Problem was solved for \(d \leq 6 \). For \(d = 3 \) the result is classical (for example, see Theorem 3.5 in 1)). If \(d = 4 \), this problem was solved^2. In the cases \(d = 5 \) and 6 the problem are proved in 3)and 4) respectively. We treat the case \(d = 7 \) in this article. Let \(n \) be the minimum odd integer in \(H \). Then we have \(g(H) = (d-1)(d-2) + \frac{n-1}{2} - r \) with a non-negative integer \(r \)^5.

Main Theorem. Let \(H \) be a numerical semigroup with \(d_2(H) = (6, 7) \) and \(g(H) \geq 45 \).

i) If \(H \) is generated by 5 elements and \(r \leq 6 \), then it is of double covering type.

ii) If \(H \) is generated by 4 elements and \(H \neq 2\langle 6, 7 \rangle + \langle n, n + 8 \rangle \), then it is of double covering type.

2 The classification of \(H \) with \(r \leq 6 \) generated by at most 5 elements

A numerical semigroup \(H \) is said to be an \(m \)-semigroup if \(m \) is the minimum positive integer in \(H \). In this case \(m \) is called the multiplicity of \(H \), which is denoted by \(m(H) \). For an \(m \)-semigroup \(H \) we set

\[
\delta = \min\{ h \in H \mid h \equiv i \bmod m \}
\]

for \(i = 1, \ldots, m - 1 \). The set \(\{m, \delta, \ldots, \delta_{m-1}\} \) is denoted by \(S(H) \), which is called the standard basis for \(H \).

From now on, let \(H \) be a numerical semigroup with \(d_2(H) = H_7 \) where we set \(H_7 = (6, 7) \). We set

\[
n = \min\{ h \in H \mid h \text{ is odd} \}.
\]

We assume \(n \geq 35 \). Then we have \(2\langle 6, 7 \rangle + n\mathbb{N}_0 \subseteq H \). We note that

\[
S(2\langle 6, 7 \rangle + n\mathbb{N}_0) = \{12, 14, 28, 42, 56, 70\} \cup \{n, n+14, n+28, n+42, n+56, n+70\}.
\]

We associate to \(H \) the diagram where \(\odot \), \(\circ \) and \(\times \) indicate an integer which is in \(M(H) \), \(H \setminus M(H) \) and \(\mathbb{N}_0 \setminus H \) respectively. Here \(M(H) \) denotes the minimal set of generators for the monoid \(H \). Let \(r = r(H) \) be the number of \(\odot \) and \(\circ \). Then \(0 \leq r \leq 15 \). Moreover, we obtain \(g(H) = 30 + \frac{n-1}{2} - r \). Let \(t(H) \) be the cardinality of the set \(\{u \in M(H) \mid u \text{ is an odd integer distinct from } n\} \).

For example, we associate the following diagram with the numerical semigroup \(H = 2\langle 6, 7 \rangle + \langle n, n + 16, n + 32 \rangle \):

\[
\begin{array}{cccccccc}
\rightarrow +2 & (n+2) & (n+4) & (n+6) & (n+8) & (n+10) \\
\oplus & \times & \times & \times & \times & \\
(n) & \bullet & \odot & \times & \times & \times & \downarrow +12 \\
\downarrow +14 & (n+14) & \bullet & \circ & \odot & \times \\
& (n+28) & \bullet & \circ & \circ & \\
& (n+42) & \bullet & \circ & \\
& (n+56) & \bullet & \\
& (n+70) &
\end{array}
\]

In this case we have \(r = r(H) = 6 \), \(g(H) = 30 + \frac{n-1}{2} - 6 \) and \(t(H) = 2 \).

From here we list numerical semigroups \(H \) with \(d_2(H) = \langle 6, 7 \rangle \), \(r = r(H) \leq 6 \) and \(t(H) = 1 \) or 2. We consider the numerical semigroups with diagrams such that there are no \(\odot \)'s in a left column of the column with \(\circ \) in the diagram below.

(1) Consider

\[
\begin{array}{cccccccc}
\rightarrow +2 & (n+2) & (n+4) & (n+6) & (n+8) & (n+10) \\
\bullet & \times & \times & \times & \times & \odot \\
(n) & \bullet & \times & \times & \times & \circ & \downarrow +12 \\
\downarrow +14 & (n+14) & \bullet & \times & \times & \circ \\
& (n+28) & \bullet & \times & \circ \\
& (n+42) & \bullet & \circ \\
& (n+56) & \bullet \\
& (n+70) &
\end{array}
\]
Then we have $H = 2H_7 + \langle n, n + 2t_1 \rangle$ with $t_1 = 35 - 6l$ where l is a positive integer with $l \leq 5$.

(2) Consider

\[
\begin{array}{cccccc}
\rightarrow +2 & (n+2) & (n+4) & (n+6) & (n+8) & (n+10) \\
\bullet & \times & \times & \times & \times & \times \\
(n) & \bullet & \times & \times & \circ & \circ \downarrow +12 \\
\backslash_{n+14} & (n+14) & \bullet & \times & \circ & \circ \\
\end{array}
\]

Then we have $H = 2H_7 + \langle n, n + 2t_1 \rangle$ with $t_1 = 28 - 6l$ where l is a positive integer with $l \leq 3$, $H = 2H_7 + \langle n, n + 2(28 - 12), n + 2t_2 \rangle$ where $t_2 = 35 - 6l$ with $l = 3, 4$ and $H = 2H_7 + \langle n, n + 2(28 - 6), n + 2t_2 \rangle$ where $t_2 = 35 - 6l$ with $2 \leq l \leq 5$.

(3) Consider

\[
\begin{array}{cccccc}
\rightarrow +2 & (n+2) & (n+4) & (n+6) & (n+8) & (n+10) \\
\bullet & \times & \times & \times & \times & \times \\
(n) & \bullet & \times & \times & \circ & \circ \downarrow +12 \\
\backslash_{n+14} & (n+14) & \bullet & \times & \circ & \circ \\
\end{array}
\]

Then we have $H = 2H_7 + \langle n, n + 2t_1 \rangle$ with $t_1 = 21 - 6l$ where l is a positive integer with $l \leq 2$, $H = 2H_7 + \langle n, n + 2(21 - 6), n + 2(28 - 12) \rangle$ and $H = 2H_7 + \langle n, n + 2(21 - 6), n + 2t_2 \rangle$ where $t_2 = 35 - 6l$ with $l = 2, 3$.

(4) Consider

\[
\begin{array}{cccccc}
\rightarrow +2 & (n+2) & (n+4) & (n+6) & (n+8) & (n+10) \\
\bullet & \circ & \times & \times & \times & \times \\
(n) & \bullet & \circ & \times & \times & \circ \downarrow +12 \\
\backslash_{n+14} & (n+14) & \bullet & \circ & \times & \circ \\
\end{array}
\]

Then we have $H = 2H_7 + \langle n, n + 2(14 - 6) \rangle$, $H = 2H_7 + \langle n, n + 2(14 - 6), n + 2(28 - 12) \rangle$ and $H = 2H_7 + \langle n, n + 2(14 - 6), n + 2t_2 \rangle$ where $t_2 = 35 - 6l$ with $l = 2, 3$.

(5) Consider

\[
\begin{array}{cccccc}
\rightarrow +2 & (n+2) & (n+4) & (n+6) & (n+8) & (n+10) \\
\bullet & \circ & \circ & \times & \times & \times \\
(n) & \bullet & \circ & \times & \times & \circ \downarrow +12 \\
\backslash_{n+14} & (n+14) & \bullet & \circ & \times & \circ \\
\end{array}
\]

Then we have $H = 2H_7 + \langle n, n + 2(7 - 6) \rangle$, and $H = 2H_7 + \langle n, n + 2(7 - 6), n + 2(35 - 12) \rangle$.

Weierstrass semigroups on double covers of plane curves of degree 7 (Kim・米田)
3 The case where H with $r \leq 6$ is generated by 5 elements

By Theorem 2.5 in 3) we know that the following numerical semigroups H with $d_2(H) = (6, 7)$ are of double covering type.

Theorem 3.1 Let n be an odd number with $n \geq 35$. Let H be a numerical semigroup with $d_2(H) = H_7 = (6, 7)$ which is one of the following type:

(i) $2H_7 + \langle n, n + 2(35 - 12), n + 2t_2 \rangle$ with $t_2 = 7(7 - m) - 6$ where m is an integer with $3 \leq m \leq 6$ and $n \geq (7 - 1)(7 - 2) + 1 + 2m$.

(ii) $2H_7 + \langle n, n + 2(35 - 6l), n + 2(28 - 6l) \rangle$ where l is an integer with $3 \leq l \leq 5$ and $n \geq (7 - 1)(7 - 2) + 3 + 2l$.

(iii) $2H_7 + \langle n, n + 2(21 - 6), n + 2(35 - 18) \rangle$ with $n \geq (7 - 1)(7 - 2) + 11$.

(iv) $2H_7 + \langle n, n + 2(28 - 12), n + 2(35 - 18) \rangle$ with $n \geq (7 - 1)(7 - 2) + 11$.

(v) $2H_7 + \langle n, n + 2(21 - 6), n + 2(28 - 12) \rangle$ with $n \geq (7 - 1)(7 - 2) + 11$.

Then H is of double covering type.

In this section we consider the case where $t(H) = 2$, i.e., H is generated by 5 elements.

The case (2) in section 2. By Theorem 3.1 (i), (ii) and (iv), any H with $t(H) = 2$ except

$$H = 2H_7 + \langle n, n + 2(28 - 12), n + 2(35 - 24) \rangle$$

is of double covering type.

The case (3) in section 2. By Theorem 3.1 (i), (iii) and (v), any H with $t(H) = 2$ except

$$H = 2H_7 + \langle n, n + 2(21 - 6), n + 2(35 - 24) \rangle$$

is of double covering type.

The case (4) in section 2. By Theorem 3.1, H with $t(H) = 2$ which is neither

$$2H_7 + \langle n, n + 2(14 - 6), n + 2(28 - 12) \rangle \text{ nor } 2H_7 + \langle n, n + 2(14 - 6), n + 2(35 - 18) \rangle$$

is of double covering type.

The case (5) in section 2. By Theorem 3.1 (i), $H = 2H_7 + \langle n, n + 2(7 - 6), n + 2(35 - 12) \rangle$ is of double covering type.

Theorem 3.2 Let C be a non-singular plane curve of degree $d \geq 4$. Let E be an effective divisor of degree $d - 1$ on C. We set $E = Q_1 + \cdots + Q_{d-1}$ where Q_i‘s are points of C. Then we have $h^0(E) = 2$ if and only if Q_1, \ldots, Q_{d-1} lie on a line $^{6)}$.

Theorem 3.3 Let (C, P) be a pointed non-singular plane curve of degree 7 and H a numerical semigroup with $d_2(H) = H(P)$ and $g(H) \geq 45$. Set

$$n = \min \{h \in H \mid h \text{ is odd} \}.$$

We note that

$$g(H) = 30 + \frac{n - 1}{2} - r$$

with some non-negative integer r. Let Q_1, \ldots, Q_r be points of C different from P with $h^0(Q_1 + \cdots + Q_r) = 1$. Moreover, assume that H has an expression

$$H = 2d_2(H) + \langle n, n + 2l_1, \ldots, n + 2l_s \rangle$$

with positive integers l_1, \ldots, l_s such that for any curve C_4 of degree 4 the inequality $C_4.C \geq (l_i - 1)P + Q_1 + \cdots + Q_r$ implies that $C_4.C \geq l_i P + Q_1 + \cdots + Q_r$, i.e.,

$$h^0(K - (l_i - 1)P - Q_1 - \cdots - Q_r) = h^0(K - l_i P - Q_1 - \cdots - Q_r)$$

where K is a canonical divisor on C. Then there is a double cover $\pi : \tilde{C} \to C$ with a ramification point \tilde{P} over P satisfying $H(\tilde{P}) = H$, i.e., H is of double covering type.
Hence, we get

$$D = \frac{n+1}{2} P - (Q_1 + \cdots + Q_r).$$

By the assumption $g(H) \geq 45$ we have

$$\deg(2D - P) = n - 2r = 2g - 59 \geq 90 - 59 = 31 = 2g(C) + 1$$

where $g(C)$ is the genus of the plane curve C of degree 7. Hence, the complete linear system $|2D - P|$ is base-point free. By Theorem 3.2 in [5) we can construct a double cover

$$\pi : \tilde{C} = \text{Spec}(\mathcal{O}_C \oplus \mathcal{O}(-D)) \to C$$

with a ramification point \tilde{P} over P with $H(\tilde{P}) = H$. □

Hereafter, let C be a non-singular plane curve of degree 7 with a total flex P and Q_1, \ldots, Q_r be points of C distinct from P. We set $E_r = Q_1 + \cdots + Q_r$.

Theorem 3.4 $H = 2H_7 + (n, n + 2(28 - 12), n + 2(35 - 24))$ is of double covering type.

Proof. In this case $r = 6$. Let us take Q_1, \ldots, Q_4 such that the four points lie on the line L_1 with $Q_5 \notin L_1$ and $Q_6 \notin L_1$. By Theorem 3.2 we obtain $h^0(Q_1 + \cdots + Q_6) = 1$. Let C_4 be a curve of degree 4 with $C_4 \geq 10P + E_6$. Since $C.T^2_\mathbb{P}L_1 \geq 14P + Q_1 + Q_2 + Q_3 + Q_4$, by Bézout’s Theorem (see Theorem p.172 in [7)) we must have $C_4 = T^2_\mathbb{P}L_1L_2$ with a line L_2, which implies that $C_4 \geq 14P + E_6$. Thus, we get $h^0(K - 10P - E_6) = h^0(K - 11P - E_6) = h^0(K - 14P - E_6) = 1$. Moreover, we have $h^0(K - 15P - E_6) = 0$. By Theorem 3.3 H is of double covering type. □

Theorem 3.5 $H = 2H_7 + (n, n + 2(21 - 12), n + 2(35 - 24))$ is of double covering type.

Proof. In this case $r = 6$. Let us take Q_1, \ldots, Q_4 such that the four points lie on the line L_1 with $Q_5 \notin L_1$ and $Q_6 \notin L_1$. Let us take a line L_P which is distinct from T_P. Let Q_5 and Q_6 be on the line L_P. Let C_4 be a curve of degree 4 with $C_4 \geq 10P + E_6$. We obtain $C_4 = T^2_\mathbb{P}L_1L_2$. Hence, we have

$$h^0(K - 10P - E_6) = h^0(K - 11P - E_6) = h^0(K - 14P - E_6) = h^0(K - 15P - E_6) = 1.$$

By Theorem 3.3 H is of double covering type.

Theorem 3.6 $H = 2H_7 + (n, n + 2(14 - 6), n + 2(35 - 18))$ is of double covering type.

Proof. In this case $r = 6$. Let L_P be a line through P which is distinct from T_P. Let us take Q_1, \ldots, Q_4 such that the four points lie on the line L_P. Let Q_5 and Q_6 be points such that the line L_0 through the two points does not contain P. Let C_4 be a curve of degree 4 with $C_4 \geq 7P + E_6$. Then we have $C_4 = T_PL_PC_2$ where C_2 is a conic containing Q_5 and Q_6. Hence we get $h^0(K - 7P - E_6) = h^0(K - 8P - E_6)$. Moreover, let C_4' be a curve of degree 4 with $C_4' \geq 16P + E_6$. Then we should have $C_4' = T^2_\mathbb{P}L_PL_0$, which implies that $\text{ord}_P(C_4', C) = 15$. This is a contradiction. Hence, we get $h^0(K - 16P - E_6) = 0$. Thus, H is of double covering type. □

Theorem 3.7 $H = 2H_7 + (n, n + 2(14 - 6), n + 2(28 - 12))$ is of double covering type.

Proof. In this case $r = 6$. Let L_P and L_P' be distinct lines through P different from T_P. Let us take Q_1, \ldots, Q_4 such that the four points lie on the line L_P. Let us take Q_5 and Q_6 such that the two points lie on the line L_P'. Let C_4 be a curve of degree 4 with $C_4 \geq 7P + E_6$. Then we have $C_4 = T_PL_PC_2$ where C_2 is a conic containing Q_5 and Q_6. Hence we get $h^0(K - 7P - E_6) = h^0(K - 8P - E_6)$. Moreover, let C_4' be a curve of degree 4 with $C_4' \geq 15P + E_6$. Then we should have $C_4' = T^2_\mathbb{P}L_PL_P'$, which implies that $h^0(K - 15P - E_6) = h^0(K - 16P - E_6) = 1$. Thus, H is of double covering type. □
4 The case where H is generated by 4 elements

In this section we treat the numerical semigroups H with $d_2(H) = (6, 7)$ and $t(H) = 1$. By Theorem 2.5 in 3) we know that the following numerical semigroups H with $d_2(H) = (6, 7)$ are of double covering type.

Theorem 4.1 Let n be an odd number with $n \geq 35$. Let H be a numerical semigroup which is one of the following:

(i) $2H_7 + \langle n, n + 2t_1 \rangle$ with $t_1 = 35 - l(7 - 1)$ where l is a positive integer with $l \leq 5$ and $n \geq (7 - 1)(7 - 2) + 1 + 2l$.

(ii) $2H_7 + \langle n, n + 2t_1 \rangle$ with $t_1 = 7m - (7 - 1)$ where m is an integer with $3 \leq m \leq 6$ and $n \geq (7 - 1)(7 - 2) - 1 + 2m$.

(iii) $2H_7 + \langle n, n + 2t_1 \rangle$ with $t_1 = 7m - 2(7 - 1)$ where m is an integer with $3 \leq m \leq 5$ and $n \geq (7 - 1)(7 - 2) - 3 + 4m$.

Then H is of double covering type.

With Theorem 4.1, we cannot say that the following three semigroups H with $d_2(H) = (6, 7)$ and $t(H) = 1$ are of double covering type or not.

(1) $2H_7 + \langle n, n + 20 \rangle$ (2) $2H_7 + \langle n, n + 8 \rangle$ (3) $2H_7 + \langle n, n + 6 \rangle$.

To prove that the numerical semigroups in (1) and (3) are of double covering type we need the following:

Theorem 4.2 (Cayley-Bacharach) (For example, see p. 671 in 7)) Let C be a non-singular plane curve. Let X_1 and X_2 be two plane curves of degree d and e respectively, meeting in a collection Γ of de points of C with multiplicity. Let Y be a curve of degree $d + e - 3$ such that the intersection $Y.C$ contains all but one point of Γ. Then $Y.C$ contains that remaining point also.

For the case (1) we use the following curve:

Lemma 4.3 The plane curve of degree 7 defined by the equation

$$(yz^2 - x^3)\left(\frac{1}{2}z^4 + ax^4\right) + (yz^2 + x^3 - 2y^3)\left(\frac{1}{2}z^4 + by^4\right) = 0$$

is nonsingular for general a and b.

Proof. We have

$$(yz^2 - x^3)\left(\frac{1}{2}z^4 + ax^4\right) + (yz^2 + x^3 - 2y^3)\left(\frac{1}{2}z^4 + by^4\right) = z^4(yz^2 - y^3) + ax^4(yz^2 - x^3) + by^4(yz^2 + x^3 - 2y^3) = F.$$

We will calculate the base locus, i.e., the intersection of the three curves

$$z^4(yz^2 - y^3) = 0, x^4(yz^2 - x^3) = 0 \text{ and } y^4(yz^2 + x^3 - 2y^3) = 0.$$

If $z = 0$, then we have $x = 0$ and $y = 0$. This is a contradiction. Hence, we may set $z = 1$. Thus, we consider the intersection of the following three curves

$$y - y^3 = 0, x^4(y - x^3) = 0 \text{ and } y^4(y + x^3 - 2y^3) = 0.$$

Hence, we have $y = 0, 1 \text{ or } -1$. Let $y = 0$. Then we have $x = 0$. Hence, we obtain the point $(0 : 0 : 1)$. Let $y = 1$. Then $x = 1, \omega \text{ or } \omega^2$ where ω is a primitive cubic root of unity. Hence, we get the three points $(1 : 1 : 1), (\omega : 1 : 1)$ and $(\omega^2 : 1 : 1)$. Let $y = -1$. Then $x = -1, -\omega \text{ or } -\omega^2$. Thus, we get the three points $(-1 : -1 : 1), (-\omega : -1 : 1)$ and $(-\omega^2 : -1 : 1)$. Therefore, the base locus consists of the seven points. The partial differentials of F are the following:

$$F_x = 4ax^3(yz^2 - x^3) - 3ax^6 + 3bx^2y^4 = ax^3(4yz^2 - 7x^3) + 3bx^2y^4$$

$$F_y = z^6 - 3yz^2z^4 + ax^4z^2 + 4by^4(yz^2 + x^3 - 2y^3) + by^4(z^2 - 6y^2) = z^6 - 3yz^2z^4 + ax^4z^2 + by^4(5yz^2 + 4x^3 - 14y^2)$$

and $F_z = 4z^3(yz^2 - y^3) + 2ax^4yz + 2by^5z$.
For general \(a \) and \(b \) we have
\[
F_x(0,0,1) = 1 \neq 0, F_x(1,1,1) = \omega^3 = 0, F_x(\omega, 1 : 1) = \omega^{10} = 0, F_x(\omega^2, 1 : 1) = -3a + 3b \neq 0.
\]
\[
F_x(-1, -1, 1) = 3a + b \neq 0, F_x(-\omega, -1, 1) = -3a + 3b \neq 0 \text{ and } F_x(-\omega^2, -1, 1) = -3a + 3b \neq 0.
\]
Hence, the plane curve defined by \(F = 0 \) is non-singular for general \(a \) and \(b \) by Bertini’s theorem (for example, see p.137 in 7)).

\[\square \]

Theorem 4.4 Let \(n \) be an odd number with \(n \geq 43 \). Then \(2H_7 + \langle n, n + 20 \rangle \) is of double covering type.

Proof. In this case \(r = 6 \). Let \(C \) be the non-singular plane curve of degree 7 in Lemma 4.3. We set \(P = (0 : 0 : 1) \).
Then we have \(C.T_P = 7P \), in this case \(T_P \) is the line defined by \(y = 0 \). Let \(C_{13} \) and \(C_{32} \) be the cubics defined by the equations \(yz^2 = x^3 = 0 \) and \(yz^2 + x^3 - 2y^3 = 0 \), respectively. Then the intersection \(C_{31}.C_{32} \) of \(C_{31} \) and \(C_{32} \) is \(3P + \sum_{i=1}^{6} Q_i \) where \(Q_1 = (1 : 1 : 1), Q_2 = (1 : 1 : \omega), Q_3 = (1 : 1 : \omega^2), Q_4 = (1 : -1 : -1), Q_5 = (1 : -1 : -\omega) \) and \(Q_6 = (1 : -1 : -\omega^2) \). Since the six points \(Q_1, \ldots, Q_6 \) are not on a line. Hence by Theorem 3.2 we get \(n^3(Q_1, \ldots, Q_6) = 1 \). Let \(C_4 \) be a curve of degree 4 with \(C_4.C \geq 9P + E_6 \). Then we obtain \(C_3.C \geq 3P + \sum_{i=1}^{6} Q_i \). Hence we get \(C_4.C \geq 10P + E_6 \). By Theorem 3.3 the numerical semigroup \(2H_7 + \langle n, n + 20 \rangle \) is of double covering type.

\[\square \]

Lemma 4.5 The plane curve of degree 7 defined by the equation
\[
(yz^2 - x^3) \left(\frac{1}{2} z^4 + ax^4 \right) + (yz^3 + x^3 z - 2y^4) \left(\frac{1}{2} z^3 + by^3 \right) = 0
\]
is nonsingular for general \(a \) and \(b \).

Proof. We have
\[
(yz^2 - x^3) \left(\frac{1}{2} z^4 + ax^4 \right) + (yz^3 + x^3 z - 2y^4) \left(\frac{1}{2} z^3 + by^3 \right) = yz^6 - y^4(z^3 + ax^3) + by^3(yz^3 + x^3 z - 2y^4) = F.
\]
The base locus is the intersection of
\[
z^3(yz^3 - y^4) = 0, x^4(yz^2 - x^3) = 0 \text{ and } y^3(yz^3 + x^3 z - 2y^4) = 0.
\]
If \(z = 0 \), then we have \(x = 0 \) and \(y = 0 \). This is a contradiction. Hence, we may set \(z = 1 \). Thus, we consider the intersection of the following three curves
\[
y - y^4 = 0, x^4(y - x^3) = 0 \text{ and } y^3(y + x^3 - 2y^4) = 0.
\]
Since we have \(y - y^4 = y(1 - y^3) = 0 \), we obtain \(y = 0, y = 1, y = \omega \) or \(y = \omega^2 \). If \(y = 0 \), then \(x = 0 \). Hence, we get the point \((0 : 0 : 1) \). If \(y = 1 \), then \(x^3 = 1 \). Thus, we have the three points \((1 : 1 : 1), (\omega : 1 : 1) \) and \((\omega^2 : 1 : 1) \). If \(y = \omega \), then we obtain the three points \((\zeta : \omega : 1), (\zeta^4 : \omega, 1) \) and \((\zeta^7 : \omega : 1) \) where \(\zeta \) is a primitive 9-th root of unity. If \(y = \omega^2 \), then we obtain the three points \((\zeta^2 : \omega^2 : 1), (\zeta^5 : \omega^2 : 1) \) and \((\zeta^8 : \omega^2 : 1) \). The partial differentials of \(F \) are the following:
\[
F_x = ax^3(4yz^2 - 7x^3) + 3bx^2y^3 z, F_y = z^6 - 4y^3z^3 + ax^4z^2 + by^2(3x^3 z + 4yz^3 - 14y^4)
\]
and \(F_z = 6y^5z - 3y^4z^2 + 2ax^4yz + by^3(3yz^2 + x^3) \).

Hence, we have
\[
F_y(0,0,1) = 1 \neq 0, F_x(1,1,1) = -3a + 3b \neq 0
\]
for general \(a \) and \(b \). For the remaining eight points the values of the function \(F_z \) are not zero for general \(a \) and \(b \). Hence the plane curve of degree 7 is non-singular.

\[\square \]
Theorem 4.6 Let \(n \) be an odd number with \(n \geq 49 \). Then \(2H_7 + \langle n, n + 6 \rangle \) is of double covering type.

Proof. In this case we have \(r = 9 \). Let \(C \) be the non-singular plane curve of degree 7 in Lemma 4.5. We set \(P = (0 : 0 : 1) \). Then we have \(C.T_P = 7P \), in this case \(T_P \) is the line defined by \(y = 0 \). Let \(C_{31} \) be the cubic defined by the equation \(yz^2 - x^3 = 0 \) and \(C_{41} \) be the quartic defined by the equation \(yz^3 + x^3z - 2y^4 = 0 \). We may assume that \(z = 1 \). Hence we consider the equations \(y - x^3 = 0 \) and \(y + x^3 - 2y^4 = 0 \), which imply that \(x^3(y^3 - 1) = 0 \). Let \(\eta \) be a primitive 9-th root of unity. We set \(Q_l = \langle \eta^l : \eta^{3l} : 1 \rangle \) for \(l = 0, 1, 2, \ldots, 8 \). Then the intersection divisor \(C_{31}.C_{41} = 3P + \sum_{l=0}^{8} Q_l \).

Let \(C_4 \) be a curve of degree 4 with \(C_4.C \geq 2P + E_9 \). Then by Theorem 4.2 we get \(C_3.C \geq 3P + \sum_{i=0}^{8} Q_i \). We want to show that \(h^0(K - E_9) = 6 \). Let \(C_4 \) be a curve of degree 4 with \(C_4.C \geq E_9 \), i.e., it is defined by the equation

\[
F_4(x, y, z) = c_{400}x^4 + c_{410}x^3y + c_{301}x^3z + c_{220}x^2y^2 + c_{211}x^2yz + c_{202}x^2z^2 + c_{130}xy^3 + c_{121}xy^2z + c_{103}xz^3 + c_{040}y^4 + c_{031}y^3z + c_{022}y^2z^2 + c_{013}yz^3 + c_{004}z^4 = 0
\]

satisfying \(F_4(\eta^l, \eta^{3l}, 1) = 0 \) for \(l = 0, 1, \ldots, 8 \). The rank of the matrix of the coefficients of the system of linear equations \(F_4(\eta^l, \eta^{3l}, 1) = 0 \) \((l = 0, 1, \ldots, 8)\) with 15 variables \(c_{ijk}, i + j + k = 4 \) is 9, because some 9 by 9 minor of the matrix is Vandermonde’s determinant. Hence, we get \(h^0(K - E_9) = 15 - 9 = 6 \), which implies that \(h^0(E_9) = 1 \). Thus, \(2H_7 + \langle n, n + 6 \rangle \) is of double covering type.

\(\square \)

We do not know whether the remaining numerical semigroup \(2H_7 + \langle n, n + 8 \rangle \) is of double covering type or not.

Acknowledgment. This work was supported by JSPS KAKENHI Grant Number18K03228.

References

1) J. Komeda, A numerical semigroup from which the semigroup gained by dividing by two is either \(\mathbb{N}_0 \) or a 2-semigroup or \((3, 4, 5) \), Research Reports of Kanagawa Institute of Technology B-33, 37–42 (2009).

工学教育研究推進機構運営会議
議 長 田中 博
構成員 小室 貴紀 金井 徳兼 局 俊明 松本 一教 芝山江美子
黄 啓新 大庭 武泰 上平 員丈 川島 豪 清水 秀信
栗原 誠 小池あゆみ 岡崎 美蘭 高橋 勝美 一色 正男
井上 秀雄 部屋 和人 山家 敏彦 野田 耕 吉野 和芳
高橋 正雄 三井 和博 橫溝久美子 井藤 晴久

神奈川工科大学研究報告
B・44 理工学編 通巻 44 号

令和 2 年 3 月 1 日 発行
編集兼発行者 神奈川工科大学
〒 243-0292 神奈川県厚木市下荻野1030
電話 046-241-6221
印刷者 株式会社スクールパートナーズ

当該研究報告に掲載された論文の著作権は本学に帰属する。