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Abstract

This paper describes a frequency analysis method for linear periodic time-varying (LPTV) circuits. In

this method, a linear time-varying equation is approximated as a set of differential equivalentequations

using a numerical integration. We propose an efficient method for computing the discretized time-varying

transfer functions in terms of many frequency points. Furthermore, computational cost and required

memories are reduced by transforming the number of variables for modified nodal analysis into the

number of capacitors and inductors in the circuit. We estimate effectiveness of the proposed method by

applying it to some examples of SCFs.
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1 Introduction

Standard circuit simulators, such as SPICE, cannot
compute frequency responses for circuits whose parame-
ters change with time, for example, switching circuits.
Some analysis tools and some analysis methods have
been proposed for Switched Capacitor Filters (SCFs)
[1, 2, 3]. However, these handle only ideal SCFs which
include ideal switches, voltage sources, and capacitors.
As our proposed method can deal with all linear ele-
ments, the effects of on-resistance for switches can be
computed easily. An AC analysis method for nonlin-
ear periodic circuits was presented [4], However, there
were still problems that there was high computational
cost and implementation on standard circuit simulator
was difficult. Then, the methods to treat as a macro-

model for the reduction of computational cost were pro-

posed [5][6]. As for these methods, there was a prob-
lem in accuracy. In this paper, the method of reduc-
ing computational cost is proposed with accuracy main-
tained. The method is easy for implementation into a
circuit simulator. In this method, a linear time-varying
equation is approximated as a set of differential equiv-
alent equations using a numerical integration. The dis-
cretized time-varying transfer functions are computed by
applying a complex sinusoidal input into the set of the
differential equivalent circuits. We propose an efficient
method for computing the transfer functions for many
frequency points. Modified Nodal Analysis (MNA) is
usually used for formulation in circuit simulators. The
variables in MNA are all nodal voltages and branch cur-
rents for inductors and voltage sources. In our method,

the variables in MNA are transformed to the state vari-
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ables using a matrix representing the interconnections of
capacitors and inductors of the network. The number of
variables is reduced dramatically.

In the second section, we describe the analysis method
for linear periodic time-varying (LPTV) circuits using
numerical integrations.

In the third section, we present the proposed efficient
computational method and variables transformation
method.

In the fourth section, we compare the exact solution
with our two numerical solutions: One computed by the
backward Euler method and the other by the trapezoidal
rule for a simple RC circuit.

In the next section, we show the influence of on-resistances
for switches in band-pass filter.

Finally, we show the availability of the proposed method
by comparing it with conventional method in terms of
computational cost for third-order SCF.

2 AC analysis for LPTV circuit using numerical
integration
2.1 LPTYV transfer function

We describe the LPTV transfer function [4] for circuits
whose parameters periodically change with time. An
output z(t) of the LPTV circuit with an input u(t) is

written as
z(t) = H(w, t)u(t), (1)

where H(w,t) is a time-varying transfer function. Then,

H(w,t) is a T-periodic function;
H(w,t+T) = H(w,t).

Fourier series expression is given by

Hwit)= Y Hew)e™", (2)

{=—o0

where Hy(w) denotes a ¢th Fourier coefficient and w, =
2. And then,

i
H,(w) = —;—1/0 H (w,t)e 7*stdt, (3)

Now, we consider a complex sinusoidal wave u(t) = e/«

as an input in (1). Substituting (2) into (1), we get the
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next equation,

z(t) = Z H(w)ed(wttws)t, (4)

t=—c0
From (4), we can interpret, that Fourier coefficient H ;(w)
is the transfer function for modulated output that ap-
pears at the frequency which moves from input frequency
w to frequency w + fw,. These transfer functions H(w)

are shown in Fig.1. From (3, H,(w) is approximated by

. P
J Tbwsh
~ Y o p=1,23 ...
H, 27T€mﬂH(w’TM)e , 1,2,3,

P
Ho@)m 5 3" H(w,m)h (5)

where H(w,,,) are solutions at sampled time, 7, =
mh (m =1,2,---,P), T = Ph, P is a number of sam-
pling points for one period, and h is a time step for the
sampling.
2.2 Calculation for transfer functions using nu-
merical integration
We consider how to compute H(w,7,,) numerically.

A differential equation for a LPTV circuit is written as
a(t)z(t) + b(t)E(t) = u(t), (6)

where a(t) and b(t) are parameters of the periodic time-
varying circuit and their period is 7. Then, applying
complex sinusoidal input u(t) = ue’*"* and substituting

t =nT + 71, into (6) gives

amz(nT + 7) + b Z(nT + 7)) = ued*(PT+7m) (7)
(m:1,2,~--,P)

b

where we can replace a(nT +7,,) with a,, as a(t) is peri-
odic. Next, we approximate the differential term & (nT +
Tm) in (8) by using a numerical integration method.
For example, applying backward Euler discretization to

z(nT + 7,,) gives

z(nT + 1) —x(nT + Trn_1)

2(nT + Tm) = A (8)
where h = 7,41 — Tpm. Substituting t = nT + 7,,, to (1)
gives

z(nT + 1) = H(w, T )ue?*("T+7m) (9)
(m=1,2,--- P).
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where H(w, 7)) = H(w,nT+71,) as H(w,t) is periodic.
Substituting (8) and (10) into (8), we get
(am + Q,?‘)I:I(W,Tm)u = %mfI(w,Tm-l)ue‘j“h =u

(m=1,2,---,P), (10)

where H denotes an approximation of H for numerical

integration. We rewrite the above equation (10) as a

matrix,
[ J1 C1 1T Xl 1 [ u 1
C2 Jz X2 u
- = ,  (11)
| cr Jp || Xp | | u
where

Therefore, Ho(w) can be calculated by using (5) and
(11). In the case of applying the trapezoidal rule to (8),
b.z(nT + 7,,,) is approximated by

bz (nT + 1) =
2(bpz(nT + Tpm) — b1 2(nT + Tm—1)) (12)
—bm_liii(TLT-i- Tm—l)-

From (8), b,,,_1Z(nT + Tpp—1) is given by

bm_lii:(TLT + Tm—l) =Um—1— am_la:(nT + Tm—l),

and we get
(@m + 222) A (w0, 7o)t + (@y — 2222).

X : , (13)
H(w, Tm_1)ue 7" = u(1 4 e=9«h).
Equation (13) has the form of a difference equation be-
tween H (w, 7,,) and H(w, Tym_1). Then, if we write (13)
by using matrix, its non-zero blocks are placed the same
asin (11). Therefore, the computational cost is the same
as in the case of using backward Euler or a trapezoidal
algorithm.
3 Efficient calculation methods
3.1 Efficient calculation method for many fre-
quencies
Since equation (11) is computed repeatedly for many

frequency points in the above mentioned analysis method,

computational cost is a problem. In our method, we
transform equation (11), dividing it into two parts; fre-
quency dependent part and frequency independent part.
Independent terms of frequency are computed before-
hand and are stored. Only the terms which depend on
frequency are computed repeatedly. In the following, we
present the proposed method.

Firstly, each diagonal block is transformed into a unit
matrix by multiplying the next matrix from the left side
in (11).

F g -
Tg
J—l
’ (14)
Tpls
i Jp'
Then, we get
[ 1 D X, ][ U |
D, I X2 U,
: o= s s (15)
Dp., I Xpo Up_1
I Dp I || Xp | | Up |
where I is the unit matrix,
D, =J;'C, =-(am+ bﬁl)‘lg,?e_j“’h
= —Dme_j“h,

Un,=J'u (m=12,---,P).
Secondly, eliminate the Pth block in the first row in (15).

Adding D; times Pth row to the first row, we have

I _D\Dp X, U,
D, I X, U,
Dp_: I Xp_i Up_:
i Dp I|| Xp | | Up |

where U} = U, + /"D, Up.

Repeating the above process for other rows, we get

[1-Q X VA
D- 1 X? U2
. o=l s |, (16)
Dp., I Xpoa Up-1
Dp I|| Xp | | Up |
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where
Q=e¢7“TD\DpDp_, - D3D,,
Z=U,-D\Up+DDpUp_, —DDpDp_1Up_,
+-+D1DpDp_1Dp_5---D3U,
=U, + ij“"hllep + e_jw(2h)D1DPUp_1
+-4ewP-DAD DpDp_Dp_y---D3U,.

In (16), LU decomposition is required only fir the first
row. Other rows can be calculated by the next substitu-

tion.

Xm :Um—Dme_l (m:2737"'aP)7

For the calculation of @ matrix and Z vector in (17),
independent terms of frequency, that is terms except
e Iwh e=iw2h ... e=i“T are calculated beforehand and
are stored. Then, computational cost for repeated cal-

culation with many frequencies is reduced.

3.2 Contraction of circuit size

Modified nodal analysis is often used in simulation.
Variables of MNA are node voltages and branch currents
for inductors and voltage sources. They increase as the
circuit size becomes larger. In this method, the amount
of memory required and computational cost increase in
proportion to product of circuit size and the number of
time steps in the numerical integration for one period.
So, for reducing computational cost and required mem-
ories, we propose a method to decrease variables in the
circuit. The number of variables is reduced to the total
number of capacitors and inductors in the circuit. In our

proposed method, define the next equation,

(17)

Yo=AX,,
b, = Ab,, A,

where X, is a vector of variables in MNA and X €
CN. Y,, is a vector of reduced variables to voltages
across capacitors and branch currents of inductors and
Y. € CN.

ing connecting information of capacitors and inductors,

and A € RV*™ is a matrix represent-

whose element is zero or +1, and b,, € RV*V is the
same matrix as b,, in (13) and b, € RN-*N: i5 a di-

agonal matrix whose elements are values of capacitors
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and inductors. In most case, N > N,. For example, we
consider a circuit shown in Fig.2.

The number of variables in MNA, N, is 5, and the
number of variables, N, is 1. As the capacitor is con-
nected from node 2 to node 3, the transposition matrix
of Ais

A‘:[O 1 -1 0 0].

Rewriting (15),

Xm:—J_leme*j“’th-#J;lu (18)

(m=1,2,---,P).

Multiplying A from the left side of (19) and substituting
(17),

Y,.= —e-jWh-DmYm—l + (]m
(m: 1727""P)7

where

{ D, = AT, Al
Un=AJd'u (DneR N U, e RV).
The matrix of (15) is reduced from (N x P)x(N x P)
to (Ng x P)x (N x P). Therefore, calculation cost and
the amount of memory required are reduced.
4 Simulation for example networks
4.1 Comparison between simulation and exact
solution

Consider an example circuit shown in Fig.3. R,/ /Ro
is 10[©] when switch S is on, and R; is 10[kQ] when
switch S is off. Capacitance C is 1[uF] and period T is
1[psec].
Calculation for exact solution We calculate analyt-

ically an exact solution of Hg(w) for the circuit shown
in Fig.3. The result is given by

How) = L [AL)51@) + ol Bw)Z(w)+ &L (19)
oI =T Jjw+a Jw+p ’
where
_ 1 — 1
X= B ) = R,C»
Aw) =1-e"GetD% Bw) =1 - e~UutNF
_ a,ae—(jW+B)%: _B-b o
Z(w) = -{iwtd@tm}r jwta JwtB | T jwta’
l1—e
— 1 ﬂ~b(»:_(jw+o‘)£l a-a _ g
Zy(w) = R (e T ey jwt+B jwta Jwtp*
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Comparison between numerical solution and ex-
act solution We compare the exact solution with two
solutions: one computed by using backward Euler and
the other by the trapezoidal rule. And we define the

error function € in
M-K

x 100 [%),

|

where K is an exact solution and M is a numerical
solution. The results for the amplitude characteristic
of Hy(w) are shown in Fig.5, where P = 50 and h =
20[nsec] for simulation.
The figure shows the error function of Hp(w) depends
on the error of numerical integrations.
4.2 Examination of influence of on-resistance
We examine influence of on-resistance, resistance on a
switch when switch is on, using the band-pass SCF as
shown in Fig.6. The results obtained with the simula-
tors that we developed and meaured values are shown in
Fig.7.
4.3 Estimation of computational cost
We estimate computational cost of third-order SCF
shown in Fig.8. And the simulation result is shown in
Fig.9.
Table.
tional cost of the equation (15) using LU decomposition

1 shows the comparison between computa-

and that of equation (16) using our proposed method. p
and ¢ indicate the number of time steps and the num-

ber of frequency points, respectively. It is found that
¥ 1 Estimation of computational cost using proposed

method of 3.1

Method Computational | 3rd’s SCF N = 61,

cost, p =50, ¢ =100
Directly g x (N xp)? 2.8 x 1012
Proposed (p+q) x N? 3.4 x 108
method 3.1

our proposed method is useful from the view point of
reducing computational cost. Table. 2 shows computa-
tional cost when variables are reduced by using (17) in
the circuit of Fig.8. It decreased to one-third.
5 Conclusion

This paper described a frequency analysis method for
LPTYV circuits. A time varying derivative equation is ap-

proximated as a set of differential equivalent equations

# 2 Estimation of methods 3.1 and 3.2

Methods | Computational | 3rd’s SCF N = 61,
cost Ny =12, p=50,q =
100
31only | (p+q)x N3 3.4 x 106
31432 | px N34qgx N3 1.2 x 108

by using numerical integration in this method. We pro-
posed an efficient method for computing the discretized
time varying transfer functions in terms of a lot of fre-
quency points. Furthermore, computational cost and re-
quired memories are reduced by transforming the num-
ber of variables for modified nodal analysis into the num-
ber of capacitors and inductors in the circuit. We showed
the availability of our method by comparing the pro-
posed method with conventional method of computa-
tional cost for third-order SCF.

msz-le input frequency : @
Ho(o) output frequency : w=lws
H-1(® H1((D)
I‘( ) | Ha(e)
| | 1 I
0-0s 0| ® otos wras °

1 Spectrum of Hy(w)

C
—

o B
I"l v R2

2 An example circuit

3 RC time-varing Circuit concluding a switch
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