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Abstract

Let H be a numerical semigroup of toric type, i.e., a minimal embedding of its monomial curve into the
affine space is derived from an embedding of some affine toric variety by substituting monomials. In this
paper we mainly treat numerical semigroups H generated by three elements. In some cases we investigate
whether there is a double covering 7 : ¢ — C of a curve over an algebraically closed field k of character-
istic 0 with a ramification point P whose Weiertrass semigroup H(P) is of toric type with H(m(P)) = H.
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1. Introduction

A numerical semigroup H is a submonoid of the additive monoid Ny of non-negative integers such that its complement
No\H in Ny is finite. The cardinality of No\ H is called the genus of H, which is denoted by g(H). We define a map d,
from the set of numerical semigroups into the same set by sending H to the numerical semigroup

_ Bl. .
dﬂH):{g‘heHiseven}. 68}
Let C' be a curve where a curve means a complete non-singular irreducible algebraic curve over an algebraically closed

field k of characteristic 0 in this paper. For a point P of C we define
H(P) = {n € Ny | there is a rational function f on C such that (f)eo = nP}, 2)

which is called the Weierstrass semigroup of P. Then H(P) is a numerical semigroup. We consider a double covering
7 : C — C of a curve with a ramification point P. Then we have dy(H (P)) = H (7(P)). A numerical semigroup H
is said to be of double covering type if there exists a double covering 7 : ¢ — C with a ramification point P such that
H(P)=H.

Let M(H) = {ay,...,a,} be the minimal set of generators for a numerical semigroup H. Then we can embed the
monomial curve Cy := Spec k[H] associated to H into the n-dimensional affine space through %oy : Cy — A"
defined by the k-algebra homomorphism ¢z : k[Xi....,X,] — k[H] = k[t"]nen sending X; to t% for each .
The numerical semigroup H is said to be of toric type if there exists an affine toric variety X of dimension m +1 —n

embedded in the m-dimensional affine space A™ such that we have the fiber product

Son

Cy <= A"
Lo ¢
X <= Am
of X and A™ over A™ through some morphism ¢ from A™ to A™ sending (z1, ..., zy,) to

(My(z1, ... 2n), o, M (21, ..., 20))
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where M;(z1,...,z,)’s are non-constant monomials.

In Section 2 we determine dy (H ) for a numerical semigroup H generated by two elements. For a numerical semigroup
H generated by three elements its image by ds is given in Section 3. In Section 4 we give examples H which are of
double covering type in each case of Sections 2 and 3. But in one case there are H which are not of double covering

type.

2. On numerical semigroups d»(H) with H generated by two elements

In this section we will show that dy(H) is generated by two or three elements if H is generated by two elements.
We use the following notation: for an m-semigroup H, i.e., the least positive integer in H is m, we set S(H) =
{m,s1,...,8m—1} where s; = min{h € H | h =17 mod m}, which is called the standard basis for H.

Lemma 2.1. Let a and b be positive integers with a < b and (a,b) = 1. Assume that either a or b is even. We set
H = (a.b). Then dy(H) is generated by two elements. In fact, if a (resp. b) is even, then dy(H) = (g, by (resp.
b

da(H) = (a, 5)).

Proof. Assume that a is even. Then we have do(H) 2 (g—, b). Let A € H, which implies that & = na + mb with n,

+ ::— - b. Thus, we get do(H) < (g, b). In the case where b is
- - |

)
e

. ) h
m € Ny. If his even, then m is even. Hence, — = n -

even the above way works well.

Lemma 2.2. Let a and b be positive integers with a < band (a,b) = 1. Assume that a and b are odd. We set H= (a, b).
b
LAY
2

Then dy(H) is generated by three elements. In fact, we have dg(f[ ) = {a,

~ b
Proof. Since a and b are odd, we get d2(H) 2 (a, ai_

<

,b). Let h € H be even. Then h = na + mb with n, m € Ny

h
where both n and m are even or odd. If » and m are even, then;: §~a+%-b. If n and m are odd withn < m
(resp n > m), then . : B -
h a+b m—n h a+b
=5t ~b(resp.§: 5 ca+m- 5 ) 3

O

We know that every numerical semigroup generated by two or three elements are of toric type!). Hence by Lemmas 2.1

and 2.2 we get the following:

Proposition 2.3. If H is a numerical semigroup generated by two elements, then H and dy(H) are of toric type.

3. On numerical semigroups d,(H) with H generated by three elements
We will investigate the numerical semigroups dz(H) with H generated by three elements in this section.

Lemma 3.1. Let H be a numerical semigroup generated by three positive integers a, b and c. Assume that two of a, b

and c are even. Then the numerical semigroup do(H) is generated by three elements. In fact, if a and b are even, then
a b

do(H) = (3. 2.0).
. b .
Proof. We may assume that a and b are even. Then dy(H) 2 (g, 5+©). Let h = na + mb + lcbe an even number with
h a b1
n, m and [ € Ny. Then { must be even. Hence, 5=n"5 +m 5 +- 5 ¢ ]

Thus, we get the following:

Proposition 3.2. Let H be a numerical semigroup generated by three positive integers a, b and c. Assume that two of a,

band c are even. Then H and do(H) are of toric type.
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Lemma 3.3. Let H be a numerical semigroup generated by three positive integers a, b and c. Assume that only one
of a, b and c is even. Then the numerical semigroup dg(f{ ) is generated by four elements. In fact, if a Is even, then

() = (3, b,e, 720,

Proof. We may assume that o is even. Then dy ()2 (%, b, c, ch> Let h = na-+mb-+lcbe an even number with n, m
b+ le b+c
and [ € Ny. Then mb+Ic is even. Since b and ¢ are odd, by the proof of Lemma 2.2 we obtain mble € (bc, —_'2_0-)
~ b
Thus, we get do(H) S (%,b, c,——;—c). O

Example 3.4. Let n be a positive integer. We set H = (8,8n 4 1,8n + 3). Then dy(H) = (4,8n + 1,8n + 3,8n + 2).
In this case, H and dy(H) are of toric type.

Proof. It sufficient to show that H = dy(H) is of toric type. We seta; = 4, az = 8n+1, a3 = 8n+3and ag = 8n+2.

For each 7 we denote by o;
min{a € Ng > 0] aa; € (a1,...,0-1,0i+1,--.,04)}.

Then we get oy = 4n + 1 and ay = a3 = ay = 2. In fact, we have the following relations:

a1a1 = ag + ag, (4)

oty = 2nay + ag, )]

azaz = (2n + 1)ay + aq, (6)

Q04 = Uy + Q3. (7)
n+1 -1 -1

Among the coefficients of the above equalities we have a relation —-2n 2 0 |=8n+2=ay. Hence His
-2n—1 0 2

of toric typel). m]

Lemma 3.5. Let H be a numerical semigroup generated by three positive integers a, b and c. Assume that a, b

and ¢ are odd. Then the numerical semigroup dy(H) is generated by six elements. In fact, we have do(H) =
a+b b+c c+a

2’2’2>'

Proof. 1t is obvious that dy(H) 2 (a,b, c, a _2|_ b, b; C, ¢ _g ¢

h
and ! € Ny. If n, m and [ are even, then — € (a,b, ¢). Otherwise, we may assume that n is even and that both m and |

<(l/? b7 c)

). Let A = na + mb -+ lc be an even number with n, m

are odd numbers with m < I. Then we get

h n " b+c+l—m ®)
5 =5 atm — 5 C
O
Here, we give examples satisfying the assumptions in Lemma 3.5.
Example 3.6. Let o be an odd number with a > 7. We set H = (a,a + 2, a + 6). Then we have
do(H) = (a,a+ 1,04 2,a+3,a+ 4,0+ 6). 9

4. Numerical semigroups of double covering type and toric type

In this section we are interested in numerical semigroups treated in Sections 2 and 3 which are of double covering type.

59
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Lemma 4.1. Let H be a numerical semigroup generated by two positive integers a and b with (a,b) = 1. Then there is
a cyclic covering of the projective line P' of degree a with a totally ramification point P such that H (]5) =H.

b
Proof. We consider two variables - and y over k satisfying an equation y* = H(w —c¢;) where ¢;’s are distinct elements

i=1

of k. Let P! be the projective line with function field k(z) and C' a curve with function field k(z, y). Then we have a
cyclic covering f : C — P! corresponding to the inclusion k(z) C k(z,y), i.e., for a point P of C the map f send
P to the projective coordinate (1, 2(P)). Then by Riemann-Hurwitz formula we obtain that the genus of C is equal to

—-1)b-1
M—). Let P, € C with f(Py) = (0: 1) and P; € C with f(P;) = (1 : ¢;) for all . Then P, is a total

ramification point of f. Moreover, we have
(z) = (z)o — aPy (10)

and

b
(y) =) _ Pi—bPy. (11
=1

Here () and (y) are the divisors of the functions x and y respectively, and (z)o denotes the divisor of the zeros of x.

—1(b-1
Hence we have H(P,,) 2 (a,b). In view of g(H(P..)) = %—) we get H(P,,) = (a, b). o

By Lemmas 4.1 we get numerical semigroups H as in Lemma 2.1 which are of double covering type as follows:

Proposition 4.2. Let a and b be relatively prime positive integers such that b is odd. Then the numerical semigroup
H = (2a,b) is of double covering type and toric type. Moreover, do(H) = (a, b is a numerical semigroup of toric type

generated by two elements.

We can construct the following numerical semigroup satisfying the condition in Lemma 2.2 which is of double covering
type:

Example 4.3. Let H = (3,5). By Lemma 2.2 we have dy(H) = (3,4,5). We will show that H is of double covering
type. The following proof is due to Takeshi Harui, Akira Ohbuchi and myself. Let 2 and y be variables over the
algebraically closed field k of characteristic O such that 3 = (z — ¢;)(z — c2)(z — c3)? where ¢, cp and c3 € k
are distinct. Let m : C — P! be the three-sheeted covering of the projective line corresponding to the inclusion
k(x) C k(z,y), i.e., 7 sends P to the homogeneous coordinate (1, z(P)). Let P;, Py, P3y and P, be the ramification
points of 7. Then C'is of genus 2. We note that P;’s are non-Weierstrass points. Let ¢ be the hyperelliptic involution on
C and o the automorphism on C such that C/{c) = P'. Then ¢ o« = ¢ 0 o. Hence, we may assume that P, = P,
which implies that Py + P, ~ gi. We set D = 2P, — P,. Then we have 2D = 4P, —2P, ~ P, + 3P, —2P, = P, + P».
We set £ = O¢(—D). Then there is an isomorphism £2? é Oc(—(P1 + P2)) C Oc. Hence, the direct sum O¢ & L
has an O¢-algebra structure through 6. Let 7 : C' = Spec (O¢: & £) —> C be a canonical morphism, which is a double
covering whose branch points are P; and P,. We call the above way to construct a double covering the Mumford’s
method. Let P; be the ramification point of m over P; for : = 1, 2. Then by Proposition 2.1 in 3) we have

K (2P)) = hKO(Py) + K (—Py + Py) = 1 (12)

and
RO (4Py) = h°(2P)) + K (Py) = 2. (13)

In view of H(P;) # 2 we get 3 € H(P,). Moreover, we obtain
KY(6Py) = h°(3P,) + hO(P) + P) = 4, (14)

because of Py + P, ~ gi. Hence, 3,5 € H(P;), which implies that H(P;) = (3,5). Thus, H = (3.5) is of double
covering type.

Here, we give some notations. For a numerical semigroup H we set ¢(H) = min{h € Ny | A+ Ny € H}. It is well-
known that c(H) = 2g(H) (for example, see Lemma 2.1 (3) in 4)). A numerical semigroup H is said to be symmetric if
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c(H) = 2g(H). For some numerical semigroups H with M (H) = 3 we have the following numerical semigroups H
of double covering type as in Lemma 3.1.

Proposition 4.4. Let a and b be relatively prime positive integers with 3 < a < b. Let c be an odd integer with
c22(a—1)(b—1) — 1. Weset H= (2a,2b,c). Then H is of double covering type with dy(H) = (a, b). In this case,
H and H = dy(H) are of toric type.

Proof. By Lemma 3.1 we have do(H) = (a, b, c). Inview of ¢ = 2(a—1)(b—1)—1 we get ¢ = c(H)+(a—1)(b—1)—1 =
c(H ), which implies that c € {a, b). Hence, do(H) = (a, b). By Theorem 2.2 in 2) we see that H is of double covering
type. O

Here, we consider some numerical semigroups H satisfying the assumptions in Lemma 3.3, but with 1M (dg(f[ ) = 3.

Proposition 4.5, Let H = (3,3-2n+ 1,3 2n + 2) with a positive integer n. Then His of double covering type and
toric type. In this case, we have dy(H) = (3,3n + 1,3n + 2) which is of toric type.

Proof. By Lemma 3.3 we have
d2(H) = (3,3 2n+1,3n+1,3n+2) = (3,30 + 1, 3n + 2). (15)

We set H = (3,3n + 1, 3n + 2), which is Weierstrass. Hence there is a pointed curve (C, P) such that H(P) = H. Let
K be a canonical divisor on C'. Since 3n+2—3 = 3n—1is the largest gap at P, we have K ~ (3n—2)P+ E where E is
an effective divisor with h°(E) = 1and h%(E — P) = 0. Let Q be a ramification point of 3 p| distinct from P such that
R?(E —Q) = 0, because the number of ramification points of 3 p| is larger than or equal to 2n+2 > n+1 =deg E+1.
We consider a divisor D = 2P — Q on C. Then 2D — P = 3P — 2Q ~ Q' with Q' # P. By the Mumford’s method
we get a double covering 7 : C — C. Let P be the ramification point over P. Then we obtain

R(2P) = R°(P) + RO(P —=D) =14+ K (-P+Q) =1 (16)

and
KO(4P) = h°(2P) + h°(2P — D) = 1 + h°(Q) = 2, (17)

which implies that 3 € H(P). Moreover, we have
R%(3-2nP) = h°(3nP) + K ((B3n — )P+ Q) = n+ 1+ h°((3n — 2)P + Q) (18)

and
R((3-2n+2)P) = h®(Bn+ 1)P)+ h*(Bn— )P+ Q) =n+ 2+ A ((3n — 1)P + Q). (19)

On the other hand we have
R(Bn—1)P+Q)=3n+1-2n+h" (K —Bn—1)P-Q)=n+1+h"(E—-P-Q)=n+1, (20)
which implies h°((3 - 2n 4 2) P) = 2n + 3. By the assumption on Q we obtain
R((Bn—2)P+Q)=3n—-1+1-2n+h" (K —(3n-2)P—-Q)=n+ R (E - Q) = n, 1)
which implies that 2°(3 - 2nP) = 2n + 1. Thus, we get 3-2n + 1,3 2n + 2 € H(P). Hence, we have H(P) = H. O

However, for a numerical semigroup H as in Lemma 3.5 we have the following examples which are not of double
covering type, in this case *M (do(H)) < 6.

Example 4.6. Let » be an odd positive integer. Then the numerical semigroup H= (3,3n 4+ 2,3(n+ 1) + 1) is not of
double covering type. In this case we have da(H) = (3, 3- nTH +1,3- z 1_ ! +2). In fact, we have g(H) = 2n+1 and
g(da(H)) = n + 1. Hence, we get g(H) = 2g(H) — 1. If ﬁ were of douI)le covering type, then by Riemann-Hurwitz
formula we should have g(f]) > ‘Zg(dz(ﬁ)) — 1. Thus, H is not of double covering type.
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We will give examples of H with M (fI ) = 4 which are of double covering type and toric type.

Lemma 4.7. Let H be a symmetric m-semigroup with m # 2. Let n be an odd number withn 2 2c¢(H) — 1. Then the

numerical semigroup H = 2H + nNy is symmetric.

Proof. Let S(H) = {m,s1,...,8m_1} be the standard basis for H. We set s,,q, = max{sy,...,S,_1}. Since H
is symmetric, we have s,ae — m + 1 = ¢(H) = 2g(H). By Lemma 2 i) in 2) the standard basis for H consists of
2m,2sy,...,28m_1,n,n + 2sy,...,n + 2s,,_1. Hence, we get c(f[) =n+ 2554 —2m+ 1 =n—1+4g(H).

1 N _
Moreover, we know from Lemma 2 ii) in 2) that g(H) = 2g(H) + nT which implies that ¢(H) = 2g(H). Hence,

His symmetric. O
Using Lemma 4.7 we get some desired numerical semigroups generated by four elements.

Proposition 4.8. Let H be a symmetric semigroup with M (H) = 3 and n an odd number withn 2 2¢(H) — 1. We set
H = 2H + nNy. Then H is of double covering type and toric type.

Proof. By Lemma 4.7 H is also symmetric. It follows from Proposition 5.2 in 1) that H is of toric type. Moreover, by
Theorem 2.2 in 2) H is of double covering type. O

Example 4.9. Let H = (4,6,4m + 1) with a positive integer m. Then g(H) = 1+ m+m +1 = 2m + 2 and
c(H)y=4dm +7—4+1 =4m + 4 = 2g(H), which implies that H is symmetric. If » is an odd number larger than or
equal to 8m + 7, then H = (8,12,8m + 2, n) is of double covering type and toric type.
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