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Abstract

We investigate the Weierstrass semigroups of ramification points on double covers of smooth plane
curves of degree d = 5 such that the ramification points are on flexes whose tangential multiplicities
are d — 2. Using the results we give numerical semigroups which are not the Weierstrass semigroups

of the ramification points.
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1. Introduction

Let C be a smooth irreducible curve of genus g, where a curve means a projective curve over an algebraically closed

field k of characteristic 0. For a point P of C we define the Weierstrass semigroup
H(P) = {n € Ny | there exists a rational function f on C such that (f)., = nP}

of P, where Nj is the additive monoid of non-negative integers and (f) . means the polar divisor of f. Then H(P) is a
numerical semigroup of genus g, which means a submonoid of Ny whose complement is a finite set with cardinality g.

Let C be a smooth plane curve of degree d = 4. For a point P of C we denote by Tp the tangent line at P on
C. Let Z be a plane curve. We denote by C.Z the intersection divisor of C with Z. Moreover, let ordp C.Z be the
multiplicity of C.Z at P. For d < 6 we describe the semigroups H (P) in 1). For a point P with ordp C.Tp= d — 2 the
semigroup H (P) is uniquely determined (see 2)). For a numerical semigroup H we denote by da(H) the set consisting
of the elements 3 for even h € H, which is a numerical semigroup. The study of this paper is related to the numerical
semigroups H = H(P) which are the Weierstrass semigroups of ramification points P on double covers 7 of smooth
plane curves of degree d. In this case we have dy(H (P)) = H(w(P)), which is the Weierstrass semigroup of a point on
a smooth plane curve of degree d.. Such a numerical semigroup H is said to be the double covering type of a plane curve.
The paper 3) shows that every numerical semigroup H of g(H) 2 9 except one type whose da(H) is the Weierstrass
semigroup of a point on a smooth plane curve of degree 4 is the double covering type of a plane curve. The excluded
semigroup is attained by a ramification point on a double cover of a hyperelliptic curve of genus 3. In 4) we showed that
for any d > 5 there exists a numerical semigroup H whose dy(H) is the Weierstrass semigroup of a point P on a smooth
plane curve of degree d with ordp C.Tp= d — 1 such that H is not the double covering type of a plane curve. In this
paper we will prove the following:

Main Theorem. Let d > 5. Then for sufficiently large g there is a numerical semigroup H of genus g whose da(H)
is the Weierstrass semigroup of a point P on a smooth plane curve of degree d with ordp C.Tp= d — 2 such that H is

not the double covering type of a plane curve.
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2. Caseof ordp(C.Tp) =d — 2

To describe a numerical semigroup we use the following notation: For any positive integers a1, as, . . ., a; we denote by
(a1,as,...,a;) the additive monoid generated by a1, as, ...,a;. By 3) we know that any numerical semigroup H of
genus = 9 with do(H) = (4,5, 6, 7) with odd n 2 3 is the double covering type of a plane curve except the semigroups
2(4,5,6,7) + (n,n + 2). We note that a point P on a non-hyperelliptic curve with H(P) = (4,5,6,7) is on a smooth
plane curve of degree 4 with ordp C.Tp= 2. We consider a numerical semigroup H with dy(H) = H(P), where P is
a point of a smooth plane curve C of degree d = 5 with ordp C.Tp= d — 2. In this article we will investigate whether
H with g(H) = 2g(dz(H)) + “—
integer in H. We will show that any H except for two kinds of numerical semigroups is not the double covering type

1 . .
— 1 is the double covering type of a plane curve or not, where n is the least odd

of a plane curve. To investigate a relation between the genera of H and dy(H) we introduce the following notion: For
a numerical semigroup H whose minimum positive integer is m we define S(H) = {m, s1, ..., Sm—1}, where we set
s; =min{h € H | h=imod m} foralli with 1 £ i < m — 1. The set S(H) is called the satndard basis for H, which

is a set of generators for H.
Lemma 2.1. Let C be a smooth plane curve of degree d = 5 and P a point of C with ordp C.Tp= d — 2. Then
SHP))={2(d—-2)}u{2(d—2)+k(d—3)|k=1,...,d—3}
U{2(d—2)+k(d—-3)+1|k=1,...,d—2}.

Set S(H(P)) = {2(d — 2), 51,...,52(d—2)—1} With s; = i mod 2(d — 2). Then s; + s; ¢ S(H(P)) for all i and j.

Proof. By 2) we have the above description of the standard basis .S(H (P)). Consider the element
s=2(d—-2)+k(d—3)+2(d—2)+1l(d—3)=4modd — 3.

We note that
2(d—2)+k(d—3)=2modd —3and 2(d —2) + k(d—3)+1=3mod d — 3.

If d 2 6, then the element s does not belong to S(H (P)), because the remainders of the above three integers divided by
d — 3 are different. If d = 5, then
s=2(d-2)+ (k+1+3)(d-3)

with k +1+3 25> d — 3 = 2, which is not in S(H(P)).
Consider
s =2(d—2)+k(d—3)+2(d—2)+1(d—3)+1=5modd— 3.

If d = 7, then s’ does not belong to S(H (P)). If d = 6, then
§=2d-2)+(k+1+3)(d-3)
with & +1+3 25> d — 3 = 3, which is not in S(H(P)). If d = 5, then
§=2d-2)+(k+1+3)(d-3)+1

with k +1+ 3 2 5 > d — 2 = 3, which is not in S(H(P)).
Lastly, consider

s'=2d-2)+k(d-3)+1+2(d-2)+1(d-3)+1=6modd — 3.
If d = 8, then s” does not belong to S(H (P)). If d = 7, then

$"=2(d—2)+ (k+1+3)(d—3)
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withk +1+3 25> d— 3 =4, which isnot in S(H(P)). If d = 6, then
s"=2(d-2)+(k+1+3)(d-3)+1
withk +1+3 25> d — 2 = 4, which isnot in S(H(P)). If d = 5, then
s'=2(d-2)+(k+1+4)(d—-3)
withk +1+4 2 6 > d — 3 = 2, which is not in S(H (P)). O

We set
d-3 d—2

Hy=2(d—2)No+ ) (2(d—2)+i(d—3))No+ Y _(2(d—2) +i(d—3) + 1)No.

i=1 i=1
Theorem 2.2. Let d = 5 and n an odd number which is larger than or equal to (d — 2)(d — 1) + 3.
A numerical semigroup H is one of the following:
i)2Hq + (n,n + 2(d — 3) +2),
i) 2Hy + (n,n + 2(d — 2)(d — 3) + 2).
Then the semigroup H is the double covering type of a plane curve.

Proof. Let (C, P) be a pointed smooth plane curve with H(P) = Hg. Then Tp.C = (d —2) P+ Ry + Ry with R; # P,
-1
i=1,2. By Lemma 2.2 in 6) and Lemma 2.1 we get g(H) = 2g(Hgy) + ?2— — 1 because

2d—3)+2=2(2(d—2)+(d—3)+1) —4(d—2)
and2(d —2)(d —3)+2=2(2(d—2)+ (d—2)(d —3) +1) — 4(d — 2).

1 . . Lo
We set D = %—P — @ with Q # P. Then the assumption on n implies that 2D — P is very ample, which implies that
the divisor 2D — P is linearly equivalent to some reduced divisor not containing P. Hence, we get a double covering

7 : C = Spec(O¢ ® Oc(—D)) — C

with a ramification point P over P. In this case, we get n € H(P).

(i) Let Q = R;. Then we obtain h°(K — (d — 3)P — Q) = h°(K — (d — 2) P — Q). Indeed, we consider a curve Cy_3
of degree d — 3 with Cy_3.C > (d — 3) P + Q, because of the fact that H°(P2, Op2(Cy—3)) ~ H°(C, O¢c(K)). Then
Cy_3.Tp =2 (d—3)P + Q. Inview of d = 5 we get Cyq_3 = TpCy_4, where Cy_4 is a curve of degree d — 4. Hence,

we get Cy_3.C =Tp.C + Cy_4.C 2 (d — 2)P + Q. By Proposition 2.1 in 5) we have

n+2(d—3)+3

5 P)+h%((d - 2)P + Q)

RO((n + 2(d — 3) + 3)P) = h°(
and
n+2(d—3) + 1P

0 Y+ h%((d - 3)P + Q).

RO((n + 2(d — 3) + 1) P) = h%(

Thus, we obtain n + 2(d — 3) + 2 € H(P).
(ii) Let Q # R; for i = 1,2. Let Cy_3 be a curve of degree d — 3 with Cy_3.C 2 (d — 2)(d — 3) P + . Then we have
Cy_3= T,‘f._‘". But we obtain

Cy3.C=TE3.C=(d—3)(d—2)P+(d—3)(R1+Rz) Z(d—2)(d-3)P+Q.
Thus, we get
0=h(K—-(d-2)(d-3)P-Q)=h"K - ((d—2)(d-3)+1)P-Q).
Hence, we have . + 2(d — 2)(d — 3) + 2 € H(P). O

Theorem 2.3. Let d = 5 and n an odd number 2 (d — 2)(d — 1) + 3. A numerical semigroup H is one of the following:

() 2Hg + (n,n+ 2t) with1 < i < d — 3, wheret = i(d — 3),
(i) 2Hg + (n,n + 2t) with2 £ i < d — 3, wheret = i(d — 3) + 1.
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Then the semigroup H is not the double covering type of a plane curve.

-1
Proof. By Lemma 2.2 in 6) and Lemma 2.1 we get g(H) = 2g(Hg) + _nT_ — 1. Assume that H is the double covering
type of a plane curve, i.e., there is a double cover C of a smooth plane curve C of degree d with a ramification point p
over a point P of C such that H(P) = H. Let R, and Ry be as in the proof of Theorem 2.2. Then by the assumption
on n there exists a point @ of C distinct from P such that 2D is linearly equivalent to a reduced divisor containing P,
. n+1

where D is P—-Q.

(i) We must have h°(K — tP — Q) = h°(K — (t — 1)P — Q). But, let C4_3 be a plane curve of degree d — 3 with
Cy_3 =T5 ' LY3 " Lg, where Ly is a line through P distinct from Tp and L is a line through Q with Lo, # P. Then

we have

Ci-3C2(i—-1)(d—-2)P+(d-3-9)P+Q=(t-1)P+Q
and Cy_3.C 2 tP + Q. This is a contradiction.

(ii) The equality H°(K — ((t — 1)P + Q)) = H°(K — (tP + Q)) must hold. But let C4_3 be a plane curve of degree
d—3withCy_3 = T},”L‘li_s_iL, where L is a line through P distinct from Tp and L is a line. Then we have

Cy3.C=(G—-1)((d—2)P+Ry+Ry)+(d—i—-3)[,.C+L.C
2GE-1D)d-2)P+(E—1)(Ri+R2)+(d—i—-3)P+LC
=({t—-2)P+(:—1)(Ry + Ry) + L.C,
where Tp.C = (d — 2)P + Ry + Rs.
Case 1: Q = Rj for some j. We may assume (Q = R;. Let L be a line through P with L # T’». Hence we have L # Q.
In this case, we get
Ci—3.C2(t-1)P+(i-1)Q2(t-1)P+Q,
because i = 2. Moreover, we have Cy_3.C 2 tP + Q.
Case 2: Q # R; for j = 1,2. Let L be the line through P and Q. Then we have L # Tp. Hence, we get Cy_3.C 2

(t—1)P+Qand Cy_3.C ZtP+ Q.
In both cases 1 and 2 we have a contradiction. a

3. Examples in the case d = 5
The following examples are given in 4):

Example 3.1. Let H be a numerical semigroup whose image by ds is (4, 7, 10, 13), which is the Weierstrass semigroup
of a point P on a smooth plane curve C of degree 5 with ordp(C.Tp) = 4. Assume that g(H) = 18. If H is neither
2(4,7,10,13)+(n,n+4) nor 2(4, 7,10, 13) + (n, n+12), then it is the double covering type of a plane curve. Moreover,
the excluded numerical semigroups 2(4, 7, 10, 13)+(n, n+4) and 2(4, 7, 10, 13)+(n, n+12) are not the double covering
type of a plane curve.

By Theorem 3.3 we get the following examples:

Example 3.2. Le n an odd number = 15. A numerical semigroup H is one of the following:

a) 2(6,8,9,10,11,13) + (n,n + 4) , b) 2(6,8,9,10,11,13) + (n,n + 8), ¢) 2(6,8,9,10,11,13) + (n,n + 10).

Then the semigroup H is not the double covering type of a plane curve. Here we note that do(H) = (6, 8,9,10,11,13)
is the Weierstrass semigroup of a point P on a smooth plane curve C of degree 5 with ordp(C.Tp) = 3.

There are other examples of numerical semigroups H with do(H) = (6,8,9,10,11,13) which are not the double

covering type of a plane curve.

Example 3.3. Le n an odd number = 17. A numerical semigroup H is one of the following:
a) 2(6,8,9,10,11,13) + (n,n + 2) ,b) 2(6,8,9,10,11,13) + (n,n + 4,n + 8).
Then the semigroup H is not the double covering type of a plane curve.
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Proof. We have
5(2(6,8,9,10,11,13) + (n)) = {12,16,18,20,22,26} U {n,n+16,n+18,n + 20,n + 22,n + 26}.
Hence, we get
(2(6,8,9,10,11,13) + (n,n + 2))\(2(6,8,9,10,11,13) + (n)) ={n+2,n + 14}

and
(2(6,8,9,10,11,13) + (n,n + 4,n + 8))\(2(6,8,9,10,11,13) + (n)) = {n + 4,n + 8}.

Thus, we obtain

n—1

—1 —]
g(H) = 29(da(H)) + "= — 2= 29((6,8,9,10,11,13)) + “o— —2 =124 "= —2,

because ¢g(2(6,8,9,10,11,13) + (n)) = 12 + nTﬂl by Lemma 2.1 in 7) and Remark 2.1 in 8). Assume that H is
the double covering type of a plane curve, i.e., there is a double cover C of a smooth plane curve C of degree 5 with a
ramification point P over a point P of C such that H(P) = H. Let 7 : C — C be the double covering. If we set
IR2E= 7r(15), then ordp(C.Tp) = 3, which implies that C.Tp = 3P + Ry + Ry, where R; and R; are distinct from P.

Then by the assumption on n there exist two points Q1 and Q2 of C distinct from P such that 2D is linearly equivalent

n+1
P Q- Q.

to a reduced divisor containing P, where D is

a) Since n + 2 € H(P), we should have
hO(P +Q1+Q2) = hO(Q1 +Q2) + 1.

However, we have h®(P + Q1 + Q2) = h%(Q1 + Q2) = 1, because C is a smooth plane curve of degree 5. This is a
contradiction.

b) In view of n + 4 € H(P) we have
R(2P + Q1+ Q2) = h°(P + Q1 + Q2) + 1,

which implies that h°(2P + Q; + Q2) = 2. By Namba’s Theorem (see 9) and 10)), there exists a line L with C.L =
2P + Q1 + Q2, which is Tp. Hence, we get {Q1,Q2} = {R1, R2}. But

hO(K —3P — Ry — Ry) =3=h°(K —4P — Ry — Rp) +1,

which implies that
R°(3P 4+ Q1 + Q2) = h°(4P + Q4+ Q>).

This contradicts n + 8 € H(P). ad
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