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Abstract

We investigate Weierstrass semigroups of ramification points on double covers of plane curves of
degree 7. We treat the cases where the Weierstrass semigroups are generated by at most 5 elements
and the ramification point is on a total flex.
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1 Introduction

Let N0 be the additive monoid of non-negative integers. A submonoid H of N0 is called a numerical semigroup if the
complement N0\H is a finite set. The cardinality of N0\H is said to be the genus of H , which is denoted by g(H). Let
C be a curve, which means a complete non-singular irreducible algebraic curve over an algebraically closed field k of
characteritic 0 in this article. For a pointed curve (C,P ) of genus g we set

H(P ) = {h ∈ N0 | there is a rational function f on C such that (f)∞ = hP}

where (f)∞ is the polar divisor of the function f . Then H(P ) becomes a numerical semigroup of genus g. We call
H(P ) the Weierstrass semigroup of P . A numerical semigroup H is said to be Weierstrass if there exists a pointed curve
(C,P ) such that H = H(P ). For any numerical semigroup H we define

d2(H) = {h ∈ N0 | 2h ∈ H},

that is to say, d2(H) is the quotient of H by 2. Then d2(H) is also a numerical semigroup. If π : C̃ −→ C is a double
cover of a curve with a ramification point P̃ over P , then we have d2(H(P̃ )) = H(P ). Such a numerical semigroup
H = H(P̃ ) is said to be of double covering type.

Let C be a smooth plane curve of degree d ≧ 4 and P its total flex, i.e., ordP C.TP= d where TP is the tangent line
at P on C and ordP C.TP is the the multiplicity at P of the intersection divisor C.TP of C with TP . Then we have
H(P ) = ⟨d− 1, d⟩ where for any positive integers a1, . . . , an we denote by ⟨a1, . . . , an⟩ the additive monoid generated
by a1, . . . , an. Conversely, if (C,P ) is a pointed curve with H(P ) = ⟨d − 1, d⟩, d ≧ 3, then C is a plane curve with
total flex P . In this article we are interested in the double covers π : C̃ −→ C of curves with ramification points on the
points whose Weierstrass semigroups are ⟨d− 1, d⟩. We pose the following problem:

TF Hurwitz Problem. Let d be a positive integer with d ≧ 3. Let H be any numerical semigroup with d2(H) =

⟨d− 1, d⟩ with g(H) ≧ 3(d− 2)(d− 1)

2
. Then is H of double covering type?

In the above problem TF means total flexes. Under the assumption g(H) ≧ 3(d− 2)(d− 1)

2
we can construct a double

cover π : C̃ −→ C with a ramification point P̃ over P for a pointed plane curve (C,P ) with H(P ) = ⟨d − 1, d⟩. But
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we cannot prove that H(P̃ ) = H . TF Hurwitz Problem was solved for d ≦ 6. For d = 3 the result is classical (for
example, see Theorem 3.5 in 1)). If d = 4, this problem was solved2). In the cases d = 5 and 6 the problem are proved
in 3)and 4) respectively. We treat the case d = 7 in this article. Let n be the minimum odd integer in H . Then we have

g(H) = (d− 1)(d− 2) +
n− 1

2
− r with a non-negative integer r 5).

Main Theorem. Let H be a numerical semigroup with d2(H) = ⟨6, 7⟩ and g(H) ≧ 45.
i) If H is generated by 5 elements and r ≦ 6, then it is of double covering type.
ii) If H is generated by 4 elements and H ̸= 2⟨6, 7⟩+ ⟨n, n+ 8⟩, then it is of double covering type.

2 The classification of H with r ≦ 6 generated by at most 5 elements

A numerical semigroup H is said to be an m-semigroup if m is the minimum positive integer in H . In this case m is
called the multiplicity of H , which is denoted by m(H). For an m-semigroup H we set

si = min{h ∈ H | h ≡ i mod m}

for i = 1, . . . ,m− 1. The set {m, s1, . . . , sm−1} is denoted by S(H), which is called the standard basis for H .
From now on, let H be a numerical semigroup with d2(H) = H7 where we set H7 = ⟨6, 7⟩. We set

n = min{h ∈ H | h is odd}.

We assume n ≧ 35 . Then we have 2⟨6, 7⟩+ nN0 ⫅ H . We note that

S(2⟨6, 7⟩+ nN0) = {12, 14, 28, 42, 56, 70} ∪ {n, n+ 14, n+ 28, n+ 42, n+ 56, n+ 70}.

We associate to H the diagram where ⊙, ◦ and × indicate an integer which is in M(H), H\M(H) and N0\H respec-
tively. Here M(H) denotes the minimal set of generators for the monoid H . Let r = r(H) be the number of ⊙ and ◦.

Then 0 ≦ r ≦ 15. Moreover, we obtain g(H) = 30 +
n− 1

2
− r. Let t(H) be the cardinality of the set

{u ∈ M(H) | u is an odd integer distinct from n}.

For example, we associate the following diagram with the numerical semigroup H = 2⟨6, 7⟩+ ⟨n, n+ 16, n+ 32⟩:

→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8) (n+ 10)
• × × × × ×

(n) • ⊙ × × × ↓ +12

↘+14 (n+ 14) • ◦ ⊙ ×
(n+ 28) • ◦ ◦

(n+ 42) • ◦
(n+ 56) •

(n+ 70)

In this case we have r = r(H) = 6, g(H) = 30 +
n− 1

2
− 6 and t(H) = 2.

From here we list numerical semigroups H with d2(H) = ⟨6, 7⟩, r = r(H) ≦ 6 and t(H) = 1 or 2. We consider
the numerical semigroups with diagrams such that there are no ⊙’s in a left column of the column with ⊙ in the diagram
below.

(1) Consider

→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8) (n+ 10)
• × × × × ⊙

(n) • × × × ◦ ↓ +12

↘+14 (n+ 14) • × × ◦
(n+ 28) • × ◦

(n+ 42) • ◦
(n+ 56) •

(n+ 70)
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Then we have H = 2H7 + ⟨n, n+ 2t1⟩ with t1 = 35− 6l where l is a positive integer with l ≦ 5.
(2) Consider

→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8) (n+ 10)
• × × × × ×

(n) • × × ⊙ × ↓ +12

↘+14 (n+ 14) • × ◦ ◦
(n+ 28) • ◦ ◦

(n+ 42) • ◦
(n+ 56) •

(n+ 70)

Then we have H = 2H7 + ⟨n, n+ 2t1⟩ with t1 = 28− 6l where l is a positive integer with l ≦ 3, H = 2H7 + ⟨n, n+

2(28− 12), n+2t2⟩ where t2 = 35− 6l with l = 3, 4 and H = 2H7 + ⟨n, n+2(28− 6), n+2t2⟩ where t2 = 35− 6l

with 2 ≦ l ≦ 5.
(3) Consider

→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8) (n+ 10)
• × × × × ×

(n) • × ⊙ × × ↓ +12

↘+14 (n+ 14) • ◦ ◦ ×
(n+ 28) • ◦ ◦

(n+ 42) • ◦
(n+ 56) •

(n+ 70)

Then we have H = 2H7 + ⟨n, n+ 2t1⟩ with t1 = 21− 6l where l is a positive integer with l ≦ 2, H = 2H7 + ⟨n, n+

2(21− 6), n+ 2(28− 12)⟩ and H = 2H7 + ⟨n, n+ 2(21− 6), n+ 2t2⟩ where t2 = 35− 6l with l = 2, 3.
(4) Consider

→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8) (n+ 10)
• × × × × ×

(n) • ⊙ × × × ↓ +12

↘+14 (n+ 14) • ◦ × ×
(n+ 28) • ◦ ×

(n+ 42) • ◦
(n+ 56) •

(n+ 70)

Then we have H = 2H7 + ⟨n, n+2(14− 6)⟩, H = 2H7 + ⟨n, n+2(14− 6), n+2(28− 12)⟩ and H = 2H7 + ⟨n, n+

2(14− 6), n+ 2t2⟩ where t2 = 35− 6l with l = 2, 3.
(5) Consider

→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8) (n+ 10)
• ⊙ × × × ×

(n) • ◦ × × × ↓ +12

↘+14 (n+ 14) • ◦ × ×
(n+ 28) • ◦ ×

(n+ 42) • ◦
(n+ 56) •

(n+ 70)

Then we have H = 2H7 + ⟨n, n+ 2(7− 6)⟩, and H = 2H7 + ⟨n, n+ 2(7− 6), n+ 2(35− 12)⟩.
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3 The case where H with r ≦ 6 is generated by 5 elements

By Theorem 2.5 in 3) we know that the following numerical semigroups H with d2(H) = ⟨6, 7⟩ are of double covering type.

Theorem 3.1 Let n be an odd number with n ≧ 35. Let H be a numerical semigroup with d2(H) = H7 = ⟨6, 7⟩ which

is one of the following type:

(i) 2H7 + ⟨n, n + 2(35 − 12), n + 2t2⟩ with t2 = 7(7 − m) − 6 where m is an integer with 3 ≦ m ≦ 6 and

n ≧ (7− 1)(7− 2) + 1 + 2m.

(ii) 2H7 + ⟨n, n+ 2(35− 6l), n+ 2(28− 6)⟩ where l is an integer with 3 ≦ l ≦ 5 and n ≧ (7− 1)(7− 2) + 3 + 2l.

(iii) 2H7 + ⟨n, n+ 2(21− 6), n+ 2(35− 18)⟩ with n ≧ (7− 1)(7− 2) + 11.

(iv) 2H7 + ⟨n, n+ 2(28− 12), n+ 2(35− 18)⟩ with n ≧ (7− 1)(7− 2) + 11.

(v) 2H7 + ⟨n, n+ 2(21− 6), n+ 2(28− 12)⟩ with n ≧ (7− 1)(7− 2) + 11.

Then H is of double covering type.

In this section we consider the case where t(H) = 2, i.e., H is generated by 5 elements.

The case (2) in section 2. By Theorem 3.1 (i), (ii) and (iv), any H with t(H) = 2 except

H = 2H7 + ⟨n, n+ 2(28− 12), n+ 2(35− 24)⟩

is of double covering type.
The case (3) in section 2. By Theorem 3.1 (i), (iii) and (v), any H with t(H) = 2 except

H = 2H7 + ⟨n, n+ 2(21− 6), n+ 2(35− 24)⟩

is of double covering type.
The case (4) in section 2. By Theorem 3.1, H with t(H) = 2 which is neither

2H7 + ⟨n, n+ 2(14− 6), n+ 2(28− 12)⟩ nor 2H7 + ⟨n, n+ 2(14− 6), n+ 2(35− 18)⟩

is of double covering type.
The case (5) in section 2. By Theorem 3.1 (i), H = 2H7+ ⟨n, n+2(7−6), n+2(35−12)⟩ is of double covering type

Theorem 3.2 Let C be a non-singular plane curve of degree d ≧ 4. Let E be an effective divisor of degree d− 1 on C.

We set E = Q1 + · · ·+Qd−1 where Qi’s are points of C. Then we have h0(E) = 2 if and only if Q1, . . . , Qd−1 lie on

a line 6).

Theorem 3.3 Let (C,P ) be a pointed non-singular plane curve of degree 7 and H a numerical semigroup with d2(H) =

H(P ) and g(H) ≧ 45. Set

n = min{h ∈ H | h is odd}.

We note that

g(H) = 30 +
n− 1

2
− r

with some non-negative integer r. Let Q1, . . . , Qr be points of C different from P with h0(Q1+· · ·+Qr) = 1. Moreover,

assume that H has an expression

H = 2d2(H) + ⟨n, n+ 2l1, . . . , n+ 2ls⟩

with positive integers l1, . . . , ls such that for any curve C4 of degree 4 the inequality C4.C ≧ (li− 1)P +Q1+ · · ·+Qr

implies that C4.C ≧ liP +Q1 + · · ·+Qr, i.e.,

h0(K − (li − 1)P −Q1 − · · · −Qr) = h0(K − liP −Q1 − · · · −Qr)

where K is a canonical divisor on C. Then there is a double cover π : C̃ −→ C with a ramification point P̃ over P

satisfying H(P̃ ) = H , i.e., H is of double covering type.
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Proof. We consider the divisor
D =

n+ 1

2
P − (Q1 + · · ·+Qr).

By the assumption g(H) ≧ 45 we have

deg(2D − P ) = n− 2r = 2g − 59 ≧ 90− 59 = 31 = 2g(C) + 1

where g(C) is the genus of the plane curve C of degree 7. Hence, the complete linear system |2D − P | is base-point
free. By Theorem 2.2 in 5) we can construct a double cover

π : C̃ = Spec (OC ⊕O(−D)) −→ C

with a ramification point P̃ over P with H(P̃ ) = H . �

Hereafter, let C be a non-singular plane curve of degree 7 with a total flex P and Q1, . . . , Qr be points of C distinct
from P . We set Er = Q1 + · · ·+Qr.

Theorem 3.4 H = 2H7 + ⟨n, n+ 2(28− 12), n+ 2(35− 24)⟩ is of double covering type.

Proof. In this case r = 6. Let us take Q1, . . . , Q4 such that the four points lie on the line L1 with Q5 ̸∈ L1 and Q6 ̸∈ L1.
By Theorem 3.2 we obtain h0(Q1 + · · · + Q6) = 1. Let C4 be a curve of degree 4 with C4.C ≧ 10P + E6. Since
C.T 2

PL1 ≧ 14P +Q1 +Q2 +Q3 +Q4, by Bézout’s Theorem (see Theorem p.172 in 7)) we must have C4 = T 2
PL1L2

with a line L2, which implies that C4.C ≧ 14P + E6. Thus, we get h0(K − 10P − E6) = h0(K − 11P − E6) =

h0(K − 14P −E6) = 1. Moreover, we have h0(K − 15P −E6) = 0. By Theorem 3.3 H is of double covering type. �

Theorem 3.5 H = 2H7 + ⟨n, n+ 2(21− 6), n+ 2(35− 24)⟩ is of double covering type.

Proof. In this case r = 6. Let us take Q1, . . . , Q4 such that the four points lie on the line L1 with Q5 ̸∈ L1 and Q6 ̸∈ L1.
Let us take a line LP which is distinct from TP . Let Q5 and Q6 be on the line LP . Let C4 be a curve of degree 4 with
C4.C ≧ 10P + E6. We obtain C4 = T 2

PL1LP . Hence, we have

h0(K − 10P − E6) = h0(K − 11P − E6) = h0(K − 14P − E6) = h0(K − 15P − E6) = 1.

By Theorem 3.3 H is of double covering type.

Theorem 3.6 H = 2H7 + ⟨n, n+ 2(14− 6), n+ 2(35− 18)⟩ is of double covering type.

Proof. In this case r = 6. Let LP be a line through P which is distinct from TP . Let us take Q1, . . . , Q4 such that the
four points lie on the line LP . Let Q5 and Q6 be points such that the line L0 through the two points does not contain P .
Let C4 be a curve of degree 4 with C4.C ≧ 7P + E6. Then we have C4 = TPLPC2 where C2 is a conic containing
Q5 and Q6. Hence we get h0(K − 7P − E6) = h0(K − 8P − E6). Moreover, let C ′

4 be a curve of degree 4 with
C ′

4.C ≧ 16P+E6. Then we should have C ′
4 = T 2

PLPL0, which implies that ordP (C ′
4.C) = 15. This is a contradiction.

Hence, we get h0(K − 16P − E6) = 0. Thus, H is of double covering type. �

Theorem 3.7 H = 2H7 + ⟨n, n+ 2(14− 6), n+ 2(28− 12)⟩ is of double covering type.

Proof. In this case r = 6. Let LP and L′
P be distinct lines through P different from TP . Let us take Q1, . . . , Q4 such

that the four points lie on the line LP . Let us take Q5 and Q6 such that the two points lie on the line L′
P . Let C4 be a

curve of degree 4 with C4.C ≧ 7P + E6. Then we have C4 = TPLPC2 where C2 is a conic containing Q5 and Q6.
Hence we get h0(K−7P −E6) = h0(K−8P −E6). Moreover, let C ′

4 be a curve of degree 4 with C ′
4.C ≧ 15P +E6.

Then we should have C ′
4 = T 2

PLPL
′
P , which implies that h0(K − 15P − E6) = h0(K − 16P − E6) = 1. Thus, H is

of double covering type. �
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4 The case where H is generated by 4 elements

In this section we treat the numerical semigroups H with d2(H) = ⟨6, 7⟩ and t(H) = 1. By Theorem 2.5 in 3) we know
that the following numerical semigroups H with d2(H) = ⟨6, 7⟩ are of double covering type.

Theorem 4.1 Let n be an odd number with n ≧ 35. Let H be a numerical semigroup which is one of the following:

(i) 2H7+⟨n, n+2t1⟩ with t1 = 35− l(7−1) where l is a positive integer with l ≦ 5 and n ≧ (7−1)(7−2)+1+2l.

(ii) 2H7+⟨n, n+2t1⟩ with t1 = s7−m−(7−1) where m is an integer with 3 ≦ m ≦ 6 and n ≧ (7−1)(7−2)−1+2m.

(iii) 2H7+⟨n, n+2t1⟩ with t1 = s7−m−2(7−1) where m is an integer with 3 ≦ m ≦ 5 and n ≧ (7−1)(7−2)−3+4m.

Then H is of double covering type.

With Theorem 4.1, we cannot say that the following three semigroups H with d2(H) = ⟨6, 7⟩ and t(H) = 1 are
of double covering type or not.

(1) 2H7 + ⟨n, n+ 20⟩ (2) 2H7 + ⟨n, n+ 8⟩ (3) 2H7 + ⟨n, n+ 6⟩.
To prove that the numerical semigroups in (1) and (3) are of double covering type we need the following:

Theorem 4.2 (Cayley-Bacharach) (For example, see p. 671 in 7)) Let C be a non-singular plane curve. Let X1 and X2

be two plane curves of degree d and e respectively, meeting in a collection Γ of de points of C with multiplicity. Let Y

be a curve of degree d + e − 3 such that the intersection Y.C contains all but one point of Γ. Then Y.C contains that

remaining point also.

For the case (1) we use the following curve:

Lemma 4.3 The plane curve of degree 7 defined by the equation

(yz2 − x3)

(
1

2
z4 + ax4

)
+ (yz2 + x3 − 2y3)

(
1

2
z4 + by4

)
= 0

is nonsingular for general a and b.

Proof. We have

(yz2−x3)

(
1

2
z4 + ax4

)
+(yz2+x3−2y3)

(
1

2
z4 + by4

)
= z4

(
yz2 − y3

)
+ax4(yz2−x3)+by4(yz2+x3−2y3) = F.

We will calculate the base locus, i.e., the intersection of the three curves

z4(yz2 − y3) = 0, x4(yz2 − x3) = 0 and y4(yz2 + x3 − 2y3) = 0.

If z = 0, then we have x = 0 and y = 0. This is a contradiction. Hence, we may set z = 1. Thus, we consider the
intersection of the following three curves

y − y3 = 0, x4(y − x3) = 0 and y4(y + x3 − 2y3) = 0.

Hence, we have y = 0, 1 or −1. Let y = 0. Then we have x = 0. Hence, we obtain the point (0 : 0 : 1). Let y = 1.
Then x = 1, ω or ω2 where ω is a primitive cubic root of unity. Hence, we get the three points (1 : 1 : 1), (ω : 1 : 1) and
(ω2 : 1 : 1). Let y = −1. Then x = −1, −ω or −ω2. Thus, we get the three points (−1 : −1 : 1), (−ω : −1 : 1) and
(−ω2 : −1 : 1). Therefore, the base locus consists of the seven points. The partial differentials of F are the following:

Fx = 4ax3(yz2 − x3)− 3ax6 + 3bx2y4 = ax3(4yz2 − 7x3) + 3bx2y4

Fy = z6 − 3y2z4 + ax4z2 +4by3(yz2 +x3 − 2y3)+ by4(z2 − 6y2) = z6 − 3y2z4 + ax4z2 + by3(5yz2 +4x3 − 14y2)

and Fz = 4z3(yz2 − y3) + 2ax4yz + 2by5z.
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For general a and b we have

Fx(0, 0, 1) = 1 ̸= 0, Fx(1, 1, 1) = −3a+ 3b ̸= 0, Fx(ω, 1 : 1) = −3a+ 3bω2 ̸= 0, Fx(ω
2, 1 : 1) = −3a+ 3bω ̸= 0,

Fx(−1,−1, 1) = 3a+ 3b ̸= 0, Fx(−ω,−1, 1) = −3a+ 3bω2 ̸= 0 and Fx(−ω2,−1, 1) = −3a+ 3bω ̸= 0.

Hence, the plane curve defined by F = 0 is non-singular for general a and b by Bertini’s theorem (for example, see
p.137 in 7)). �

Theorem 4.4 Let n be an odd number with n ≧ 43. Then 2H7 + ⟨n, n+ 20⟩ is of double covering type.

Proof. In this case r = 6. Let C be the non-singular plane curve of degree 7 in Lemma 4.3. We set P = (0 : 0 : 1).
Then we have C.TP = 7P , in this case TP is the line defined by y = 0. Let C31 and C32 be the cubics defined
by the equations yz2 − x3 = 0 and yz2 + x3 − 2y3 = 0, respectively. Then the intersection C31.C32 of C31 and

C32 is 3P +

6∑
i=1

Qi where Q1 = (1 : 1 : 1), Q2 = (1 : 1 : ω), Q3 = (1 : 1 : ω2), Q4 = (1 : −1 : −1),

Q5 = (1 : −1 : −ω) and Q6 = (1 : −1 : −ω2). Since the six points Q1, . . . , Q6 are not on a line. Hence by
Theorem 3.2 we get h0(Q1, . . . , Q6) = 1. Let C4 be a curve of degree 4 with C4.C ≧ 9P + E6. Then we obtain

C4 = TPC3 where C3 is a cubic. Since C3.C ≧ 2P +

6∑
i=1

Qi and C31.C32 = 3P +

6∑
i=1

Qi, by Theorem 4.2 we obtain

C3.C ≧ 3P +

6∑
i=1

Qi. Hence we get C4.C ≧ 10P +E6. By Theorem 3.3 the numerical semigroup 2H7 + ⟨n, n+ 20⟩

is of double covering type. �

Lemma 4.5 The plane curve of degree 7 defined by the equation

(yz2 − x3)

(
1

2
z4 + ax4

)
+ (yz3 + x3z − 2y4)

(
1

2
z3 + by3

)
= 0

is nonsingular for general a and b.

Proof. We have

(yz2−x3)

(
1

2
z4 + ax4

)
+(yz3+x3z−2y4)

(
1

2
z3 + by3

)
= yz6−y4z3+ax4(yz2−x3)+by3(yz3+x3z−2y4) = F.

The base locus is the intersection of

z3(yz3 − y4) = 0, x4(yz2 − x3) = 0 and y3(yz3 + x3z − 2y4) = 0.

If z = 0, then we have x = 0 and y = 0. This is a contradiction. Hence, we may set z = 1. Thus, we consider the
intersection of the following three curves

y − y4 = 0, x4(y − x3) = 0 and y3(y + x3 − 2y4) = 0.

Since we have y− y4 = y(1− y3) = 0, we obtain y = 0, y = 1, y = ω od y = ω2. If y = 0, then x = 0. Hence, we get
the point (0 : 0 : 1). If y = 1, then x3 − 1 = 0. Thus, we have the three points (1 : 1 : 1), (ω : 1 : 1) and (ω2 : 1 : 1). If
y = ω, then we obtain the three points (ζ : ω : 1), (ζ4 : ω, 1) and (ζ7 : ω : 1) where ζ is a primitive 9-th root of unity. If
y = ω2, then we obtain the three points (ζ2 : ω2 : 1), (ζ5 : ω2 : 1) and (ζ8 : ω2 : 1). The partial differentials of F are
the following:

Fx = ax3(4yz2 − 7x3) + 3bx2y3z, Fy = z6 − 4y3z3 + ax4z2 + by2(3x3z + 4yz3 − 14y4)

and Fz = 6yz5 − 3y4z2 + 2ax4yz + by3(3yz2 + x3).

Hence, we have
Fy(0, 0, 1) = 1 ̸= 0, Fx(1, 1, 1) = −3a+ 3b ̸= 0

for general a and b. For the remaining eight points the values of the function Fx are not zero for general a and b. Hence
the plane curve of degree 7 is non-singular. �
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Theorem 4.6 Let n be an odd number with n ≧ 49. Then 2H7 + ⟨n, n+ 6⟩ is of double covering type.

Proof. In this case we have r = 9. Let C be the non-singular plane curve of degree 7 in Lemma 4.5. We set P = (0 : 0 :

1). Then we have C.TP = 7P , in this case TP is the line defined by y = 0. Let C31 be the cubic defined by the equation
yz2 − x3 = 0 and C41 be the quartic defined by the equation yz3 + x3z − 2y4 = 0. We may assume that z = 1. Hence
we consider the equations y−x3 = 0 and y+x3− 2y4 = 0, which imply that x3(x9− 1) = 0. Let η be a primitive 9-th

root of unity. We set Ql = (ηl : η3l : 1) for l = 0, 1, 2, . . . , 8. Then the intersection divisor C31.C41 is 3P +

8∑
l=0

Ql.

Let C4 be a curve of degree 4 with C4.C ≧ 2P + E9. Then by Theorem 4.2 we get C3.C ≧ 3P +

8∑
i=0

Qi . We want to

show that h0(K − E9) = 6. Let C4 be a curve of degree 4 with C4.C ≧ E9, i.e., it is defined by the equation

F4(x, y, z) = c400x
4 + c310x

3y + c301x
3z + c220x

2y2 + c211x
2yz + c202x

2z2 + c130xy
3+

c121xy
2z + c112xyz

2 + c103xz
3 + c040y

4 + c031y
3z + c022y

2z2 + c013yz
3 + c004z

4 = 0

satisfying F4(η
l, η3l, 1) = 0 for l = 0, 1, . . . , 8. The rank of the matrix of the coefficients of the system of linear

equations F4(η
l, η3l, 1) = 0 ( l = 0, 1, . . . , 8) with 15 variables cijk, i+ j + k = 4 is 9, because some 9 by 9 minor of

the matrix is Vandermonde’s determinant. Hence, we get h0(K − E9) = 15 − 9 = 6, which implies that h0(E9) = 1.
Thus, 2H7 + ⟨n, n+ 6⟩ is of double covering type. �

We do not know whether the remaining numerical semigroup 2H7 + ⟨n, n+ 8⟩ is of double covering type or not.
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