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Abstract

This paper discusses stability criteria for the RC network containing distributed RC
lines. This network is closely related to the non-integer integral and can be represented by
V'S (S=differential operator). Though this network is practically important, this
stability problem has not been investigated in the past owing to the presence of the
non-integer operator »/S as the basic passive element. For this reason, in this paper, to
begin with we will define the polynominal called the characteristic polynomial of /S and
we will show that the stability of this system is determined solely by the location of the
roots of this polynominal in the 90° sector of 4/ 'S -plane.

Thus, we wil find the algebraic condition for stability.

As the result, we will set up two criteria, Routh and Hurwitz types.

These criteria will be applied not only to this system but also to any other non-integer

1. Introduction

The non-integer integral operator is represented by 1/S* (#; integral order including non-
integer, S=differential operator) from an operator theoretical point of view, and the
systems expressed in terms of this operator, 1/S*, are usually called non-integer integral
system or S*-parameter systems.

As Fig. 1 shows, we consider a single input-output system with the construction
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Fig. 1 Svi-System.

elements 1/S1, R as constants.
The input-output relation of this system can be formulated by the following rational
function with the variable S”.
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In many problems of physical science that we encounter, this equation plays a
paramount role, i.e.: heat conduction? (Carslaw and Jaeger, 1947), diffusion2 (Babbitt, 1950,
Crank, 1956), viscous flow3) (Moore, 1964), neutron migration® (Davison, 1957), flow through
porous media® (Muskat, 1937), the simplification of the high order differential equations,
the complex control systems®) (Manabe, 1960) and the realization ofnon-integer integral
computing clements”) (Hashimoto, 1969), to mention only a few.

In the field of network theory, the RC network comprising the uniform RC distributed
lines can be thought of as this system, provided that »=0.5.

If the basis passive elements in this network are represented from the impedance point of
view, these consist of three kinds; R, 1 /8C, 7 V'S, and the impedance function or the transfer
function of the transmission network constructed by these can be represented as the

rational function F( 1/5) of one variale V'S. Though this network is practically important in
the construction of the thin film integrated circuit and so on, the stability problem of
this network has not been investigated in the past owing to the presence of the non-integer
operator V'S as the basis passive element.

The algebraic criteria in the conventional integer system, i.e. the lumped parameter
system can not be adapted to this problem.

For this reason, we begin in this paper to define the polynominal called the character-
istic polynominal of V'S and we will show that the stability of this system is determined
solely by the loaction of the roots of this characteristic polynominal in the shadowed portion

of V'S plane as shown in Fig. 2.
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Fig. 2 Stable region.

Thus we will find the algebraic conditions for stability. As the result, we thus set up two
criteria; the Routh and Hurwitz types. These criteria can be applied not only to this
network which motivates us to think of the stability problem but also to the general non-
integer integral systems®) that arise in the many other diverse areas.
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Fig. 3 (a) Open Termination. Fig. 3 (b) Close Termination.

2. V'S -parameter system

The driving point impedance of uniformly distributed RC line of length is represented
in accorance with the following conditions.
In the case of open termination as shown in Fig. 3(a), we have

cothyy L
Zpo= 'yo_scoyo_ (2)
In the case of short termination as shown in ig. 3(b), we have
R,
Zus yocoth yg L ®)

where R, and C, are respectively resistance and capacitance of lines per unit length and 7,=

VSC, R, Now in (2) and (3), when L—cc, we obtain
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This indicates that the dryiving point impedance of the semi-infinite distributed RC line can

be represented as 7/ VS,

The frequency characteristics of the amplitude and the phase with regard to Z,,,, Z,;,
in (2) and (3) are shown as in Fig. 3(c).
As apparant from this figure, even in the case of a finite length distributed line, deviation
from the true value of Z0, Z;,, is within one percent both in amplitude and phase
characteristics over the angle frequency w=10w, provided that wo=1/C\R, ((C;, R, represent
the total capacitance and total resistance of the lines.)

Hence, the immittance functions or transfer functions of the system composed of
lumped resistors, lumped capacitors and uniformly distributed RC lines can be approxi-

mately expressed as the real rational functions of the variable V'S . We shall call these

networks the v S- —parameter systems and discuss its stability problem.

3. Pole location of 1/§-paramter system

As Fig. 4 shows, the voltage transmission function of the network composed of resisters,
capacitors and infinite RC lines are described by the following expression:

-0
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Fig. 4 The network composed of registers, capacitors and infinite RC lines.

: VS)34+8(V5)24+19(VS) +12
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(VS)3+ (8—3K) (VS)2+ (19—6K) V'S +12
Generally, RC networks including infinite RC distributed lines can be expressed as the
real rational functions; F(V'S ) of the variable V'S.

©)

If we apply to F(V'S) the method of partial fraction, we can express it in the following form.

F(wS=-x P & u_ b

=1 VS — oy i=¢+1 r=1 (1/5‘— oz]-)i'r ©)
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Now we shall investigate the —- portion of Eq. (6).

(VS—2)r

Taking the inverse Laplace transform of (T,sTlif we obtain

r . .
-1 [___1—:] = Ar—l $r-1 gl1A12cos2(0;+2mm) pjtIA12sin2 (0, +2mm)
m 1

(VS ="

i=

00

1 0.5 j?ﬂ_ 7 (40.5 —J'%_ r
+ *._J‘ e—-vx (x € A) (x 4 /\)

: dx 7)
2 @j 0 (x—ZAcosg X242 7

where A =|A|e/1£0, ;=argA(— <6, <7

Y. denotes the sum as long as integer m satisfying — 121 < 60,4+ 2mm < g
m

The second integral term of Eq. (7) can be easily thought of stable, since it becones zero when
t—>+co. Next, we will consider the first term with regards to stability.

The first term gradually becomes smaller and smaller until it reaches zero when COS
2 (0+2mm) < 0. Conversely when COS 2(0,+2mmn) > 0, the first term increases monoton-
ously to an unlimited extent or oscillates with increasing wave amplitude.

From the preceding discussion, we reach the following conclusion:

In order for the system function F( VS ) in V'S -parameter system to be stable it is
necessary and sufficient that the denominator polynominal D(1/§( has no roots in the
shadowed region including the boundary of the VS plane as shown in Fig. 2. Hence we

call D( V'S) the character- istic polynominal of V'S,
Upon this conclusion, in the next section we will discuss the algebraic conditions needed

in order for D( 1/Sk) to have no roots in the shadowed region including the boundary.

4. Stability criteria

4-1 The relation between the principle of the agrument and the Cauchy index

As Fig. 2 shows, since 6 is not % 7, we can not use the conventional relation between

the Cauchy index and principle of the argument. Therefore, we need to reconsider its
fundamentals.

When, for convenience, we make the substitution 1/S—=z, the denominator polynominal
of F(VS): D(VS) becomes

D(z) =ap” +a 2" 1+ - +a,,2+ a,
ay >0, a,=+0, a;; the real number

From the conclusion of the third section, in order for F( VS ) to be stable, it is necessary
and sufficient that the polynominal D(z) has no roots within the shadowed region Iy
I'y I'; including the boundary of the z-plane as shown in Fig. 5. We assume that D(z) has
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1
Z-plane

ry

Fig. 5

k roots within the region Iy I’y I’y and 2A roots on the boundaries I"3 and I',.
From this assumption.
D(z) = H(z) H(2) D** (2) = H () D’ (2)
D' (z) — H(z) D** (2) (8)
~ means complex conjugate,
where the polynominal of the roots on Iy is
H(z) = (z—s) (2 —89) -~ (z—53)
and the polynominal of the roots on I, is
HE) = (r—5) (2 —8) -+ (2—5)
When we express D(z) in polar form z:r-ef"( = %), D(z) is denoted by D®(r) and Egq.
(8) can thus be transformed into:
D (r-¢/) = Dy(r) = Hy () Ho(r) D}* (r) = Hy(r) Dj ()
= Dyr () + jDor (r) ©)
D' (r-¢#%) — Dj (ror) = Di1 () (10)
Ho(r) = M@ — 1) (1 —13) - (r—73) = 6™ f (1)
where s; =7, 6/, s, =71y e ..., 5, =7,/
Dy (r) = Hy(r) Dj (r) = f (1) 1" Djy (r) = f (") D} (r) (11)
Dy () = Dy, () + jDir(7) (12)
D}, (r) = cosh 8-Dyg, (r) — sinh 6-Dj; ()
=ctrhpcterhl il e,
D31 (r) = sinh -Dj, () + cosh 6-Dj; (7)
=dirP g dienhl o Ll
where ¢!, ¢t ---, chp, dt, d%, -+, d4_,; ; real constant,
Dy, (r) = aycosnf-r" + aycos(n — 1)0-7"1 + --- + a,
=cg?" + "L s H 7 gy, (13)
Dy (r) = apsinnf-r" + aysin(n — 1)0-7"=, +,+++ + @, Sinf-»
=dor* +dy7r" 14 o 4 d, g7
where ¢;=a; cos(n-2)6, d;=a; sin (n-i) 6.
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In Eqgs. (9) and (10), with 7 varying from +oo to 0 along I's, the increase of argDy(r),
42, arg Dy(r) is equal to the increase of arg Dy*(r) as long as we ignore A roots on I'y.
rWith 7 varying from +oo to 0, arg Dyg*(r) increases by k(z-26) owing to k roots within I'y I'y
I's and by h(n-26) owing to % roots on I’y on the other hand decreases by (n-k-2h)8 owing
to (n-k-2h) roots outside I'sI',I"s. Hence, the result is

4z arg D} (r) = kmw + hm—nb (14)

r

Next, we consider the relation between 42 arg D} (r) and the Cauchy index I —g-zig; in
r ar

accordance with the conditions of cos,0.
(i) cosnf=+=0, c,*0
In this case, the following relation is established: (Proof is shown in the Appendix.)

D*
—:[—{A‘; arg D} (r) + nf) = — I — 61(7)

© D, () o
L)

where, D(r), D*(r) are assumed to hae no common factor, and ( ) is Gauss notation. From
Egs. (14) and (15), we obtain the following formula.

(15)

Di(7)
B+ h=—1Io 7% (16
D3, ) )
(ii) cosnf =0, ¢;= -+ =cCpu—y=0, and ¢, £ 0(m = 1)
In this case, the following relation is established: (Proof is shown in the Appendix.)
L 4 vy — o Do) 1 %
= 42 arg D} (r) = — I D1, () F 2 (@gtm = 0) (17)
where Dg;*(r) and Dg,*(r) are assumed to have no common factor.
From Egs. (14) and (17), we obtain the following formula.
_ D) né 1 _
R+ h=1I; j;ﬁ;r+7i§ (docm = 0) (18)

4-2 The Cauchy index and Extended Routh’s algorithm
In this section we find the algebraic algorithm for stability criteria, using Sturn’s
theorem and Cauchy indices using the classical theorem of Sturm.
(i) connf=+0, c,+=0
From Eq. (13),
. Do(r) dg?" + dy 7" 1+ oo L dy g

* Dy () I Co?™ + 7" L e Gy (19)
Now we make the following substitution.
I=. VDOI (7’2)_ e dy 72;’ + dy 72”—:_+ cee v d, 7t 20
7D9’(72) 007”+1+011’ 1+"'+C”7

Thus, we obtain
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fu Do, (7) _ lI“’ Dy ()
* De, (7) 2 777 1Dy, (r¥)
Therefore, the Cauchy index of Eq. (19) is equal to half that of Eq. (2), where from Eq. (8),
De;(r) and Dy, () have A common factors and
Dg;(r®) and Dy, (r?) have 2k common factors.
We apply Sturm’s theorem in the interval (—co, +o0) to the right side of Eq. (20). We set
Jo(r) =co?® — (—cy)r2n=2 4 cyp2n-d ...
Fu(0) = dg?=1 — (— &) 13 1 dyptn-5_ (g pin ...
From these two polynominals, we can construct a generalized Sturm chain Joo fi ... by
the Euclidean algorithm.
Now, we denote by V(x) the number variations of sign in the chain with a fixed value of x.

(21)

(22)

In Sturm’s theorem,

w Der ()
Iz, Doy () Van(— ) — Vay(+ o0) (23)
and since Dg;(7%) and Dy, (r?) have 2/ common factors
Von(— 00) + Vi, (+ 00) =2n—2h (24)
Since  VVpy it = -+ =V, =0, from Eqgs. (23) and (24),
Dy (%)
_;W:2[n—h—vzn—zh(+ ©0) } (25)
From Eqgs. (21) and (25), we obtain
+ Dor(r) “
o m)——n—h—Vz—zhH"oo) (26)

Since Dy;(r) and D,,(r) have  common factors, Eq. (26) becomes
+ Dor(7) + Dsl(")

Io Doy (7) - Io D;' (7) =Nn— h’ - V2n—2h (+ OO) (27)

(i) cosnb =0, ¢c;=++Cpy =0, cp =00m=1)
In this case,

Do () do?" + dy 1"+ o dpyr

DO! (7’) B Co Y™ 4 Com+1 rrmel o Ca—1? + Cy

a’. yn-m d’ yr—-m—1 e d,—r
—Ep () + — oy Tt b 4
Com ¥ +Cm+17 g +C,,_17+C”

where E,(7) is the quotient.
We make the following substitution.

4 Dol (r?), = d,m yen—2m-1 | d’m+1 ,271—2m—1? _|_ e 4 dl,"‘l’: -
“% 7Dy, (1?) T Cpp 72121 Cppgg 721212 4 . + c,,_lr‘l -i—iC,,r (28)
Thus, we obtain,
+ Dor(7) 1+ Dy(r»)
L Du) =2 1=y 00 @)
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From Eq. (29), we obtain
D1 ()
D! 5= n—m—h— V(4 c0) (30)

L=2n—2m—2h
From the proceeding discussion, we obtain
(i) cosn=+=0, c,+=0

From Egs. (16) and (27)
k=n—2h+m—V,,(+ <)

—1

D, (r)

r 2n @31)
=[5 (7 )]
We need the following extended Routh’s table when using Eq. (31).
Yoo = AgCOSNB, 75 = —aycos(m—1)0, «--, 7y,
711 = agsinnf, 7= —a,sin(n—1)0--., 7y,
722 ) (32)
P, 552 ¢om s TR e AM IR AR ES RN Y8  Pin

where L=2n-2h, every row in this table is determined by the two preceding rows according
to the following rule.

7 = Yi-v i-1'%i-2 j-1 — Vi-2 j—2¥i-1j (33)
Vi1 i-1
and V(--..) is the number of variations of sign in the first column of Routh’s table.
(i) cosnf =0, ¢;= "+ =Cp1=0, ¢y 0, (m=1)
From Egs. (18) and (30)
né 1
k=n—m—2h+—n—-;}:E—VL(+OO) dycr =0 (34)
L=2n—2m—2h

We need the following extended Routh’s table when using Eq. (34)

Yoo = @m COS(N — M) B, Yoy = — AmryCOS(N—m —1)0, -+, Vo,

’ ’
'}’uzdm ; '}’12:‘—dm+1’ .............. 3 8% Y

where every row in this table is determined by the two proceeding rows according to the

same rule of Eq. (33) and d},, d,4q, -+ corresponds to each coefficient of the remainder

after dividing the imaginary part by the real one of Dy(r) by way of the Euclidean algorithm.

Thus, summarizing we have the following theorems.

[Theorem 1]

When cos #8 %= 0, a, =0, the system (1) is stable if and only if the next Eq. (36) holds
n+m="Vou(oor 710, "+ T2m 20)

S HES)

(36)
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where § ="

4
[Theorem 2]
When cos #8 =0, a,=+0, a;ccs(n —1)8 =--.—a,,_,00s (n —m + 1) = 0, a,,cos (n— m)
6= 0(m=1), if and only if next Eq. (37) holds, the system (1) is stable.
nf 1 ;
n—m + 5 5= V(Yoo Y11, -+ +) @gsinnb-a,, cos(n —m)f = 0
L—=2n—2m, ozg (37)

4-3 The Cauchy index and it’s determinant form

In this section, we describe the Cauchy Index in (16) and (18) by the determinant form
whose elements are composed of the coefficients D(z).
Prior to doing so, we need first to state the next theorem?.

[Theorem 3]

Ket

h(z) a2+ oyl o, g2+
8@ Por 4+ e+ o+ Byegz + P

be a proper rational function. (ap+0, a;, $;; real number) If g(z) and A(z) are relatively

R(@z) =

(38)

prime, the Cauchy index I= () can be determined by the following formula.

Th2)
where 4,, is the 2p order principal minor of the following determinant.
()
e i(z) =n—2V(1, Az’ A4)"’; AZn) (39)
ao, al’ az, -----
ﬂﬂ’ ﬂli .82’ """
0 Oy, Oy, ssove
by =~ 0 " (40)
" 0, 130, ﬂl' """
and V (1, 4,, 4y, -+, 45,) is the number of variations of sign in the sequence 1, 4,, 4,, ---,
4,,. If g(z) and h(z) are not relatively prime and have L common factors, then
()
:-' i(z) Zn_L_ZV(I: A21 A4, Tty AZ(n—L)) (41)

Using this theorem, we describe the Cauchy index of (16) and (18) in the determinant
form.

In the same manner as 4-2, we consider it in accordance with the conditions of cos ,6.

(i) cos,8=+0, c,=*=0

In order to use theorem 3, we need the relation in (21). Eq. (21) is further transformed into
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the following:

L, Dat® o Dald . ful=r) L fa
2 "7 7Dy, (r?) =" Do, (r®) T fo (=7 TF for(u)
1,2 for(u) +  foa(w)
=_—(I__— —IT 42
2 (e~ o) -
where Sor () = cqu® —cyu® 1 4+ oo + (— 1)"¢c,
Jor ) = dyu” —dgu~t + -+ + (= 1)"d,
Co C1» ***s Cy o, Ay, <+, d,, are given by Eq. (13)
If we apply theorem 3 to the second term in (42), we obtain
+  Jfor(u)
I—¢W="—2V(1, By, By, +++, By,) (43)
B,p is the 2p-order principal minor of the following determinant.
€y —C1,  C ,0
dO’ '—le dz:
0 Cp —C
B _ ) (11} 1 4
m =10, 4, —d, (44)
0, , (= 1),

On the other hand, since in the first term of (42), d, vanishes, fq;() and uf,, (4) have a
common factor u.
Therefore, using theorem 3, we obtain

+ fel (u)

I._ o 16 =n—2V(1, Cy Cy+++, Cyp) (45)
where Cgp is 2p-order principal minor of the following determinant.
Copp —Ci  Cg — Cgy , 0
0, dy, —dy, dy,
T B (46)

0 ) O: do; _dlr

0, s (= 1y
Though determinants B and C are different, they can be respectively related to the following
determinant E.

do: - d1; dz; s O
Cop — C1 Co,
0 d,, — dy,
Ezn o ’ 0 1 (47)
0 ) Coy — ‘1
0, , (—=1)"c,

The relations between determinants B, C and E are




58 Research Reports of Ikutoku Tech. Univ. B-3 (1978)

(= D#Ey =By, CoEypy—Cyy (48)
Thus using this relation in Eqs. (43) and (45). Thus, we obtain
s for(u)
I‘;—'fm:—n%-hﬁ—ZV(l, E21 E4,"',E2n) (49)
+  Jor(u)
Loy =" h—=2VCo By Ey oo, Eypy) (50)
From (21), (42), (49) and (50)
+ Der(r) v E
0 W =n—V(C,, E, Ez/Ep Tt Ezn/Ean—1) (51)

The number of roots of the polynominal D(z) within '3, I'; including the boundary is
determined by the following formula derived from (16) and (51).

k+h=n+n—V(Cy Ey, EyEy, -+, Egy/Eguy) (52)
Thus when =0, 4=0, the following theorem for stability criteria can be established.

[Theorem 4]

When cos n6+0, a,+0, if and only if the next Eq. (53) holds, the system (1) is stable.

n+mn="VI(Cy Ey, EyE, -+, Ey [E,, 1) (53)
1 /2n8 1
h = - f(_ﬁ _ L
where Co = agcosnb, [2 - +1>], 0=y
Ep is the 2p-order principal minor of the determinant E2, in Eq. (48).
(i) cosnb =0, c;= -+ =cpy =0, cp=0m>1)

The Cauchy index can be described by the following formula in much the same way as
in (i)

+ Dor(r) 1/ .+ for(u) + Jor(u)
! Dy, ()~ 2 <I‘¢ uffg,(u) =Ly for (w) >
Now we denote by R(«) the quotient and by fer(#) the remainder after dividing fg (1) u
and ufy, (1), then for(u) is represented by the following

Jor () = (= D)™y un=m 4 (— Y#4Z, ur=t1) 4 oo (— 17, (55)
and since R(«) and uR (1) are the polynominal of # not related to the Cauchy index Eq.
(54) becomes

- Do (7) 1<i &1(”) I For (u)

(54)

== (1. _- — 1" 56
" Do) e\ ufe ) T -
If we apply theorem 3 to (55) in the same way as was done in (i), we obtain
+ f@l (M) ’ ’ i
I—¥ fOr(u’) :_n“h_‘m)_2V(IrB2:B:;;"':Bz(n—m)) (57)
+ fOI (%) ’ ’ [Jal
Lim:(ﬂ~h~m)—2m1ycz, C'y » 2 8C s(n-m)) (58)

where the determinant B’ is determined by the coeffecients of f,, () and fe; (#) and C’ is also
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determined by that of uf,, (#) and for (u).
B’ and C’ are respectively related to the determinant E in (41), according to the

following relations when

Co=C =" =Cr=0
E E —1
by p Bam) o Eamip— 1
B 2p ( 1) Ezm ’ c 2p Ezm—l (59)
Using these realtions, the equation (56) can be rewritten as follows.
+ D)
& =+ Deri(i;)ﬂ =n— h—m) — V(EZm/E2m—1: E2m+1/E2m: )

EpulEgp-1) docw = 0) (60)
By the following formula, derived from (18) and (60), the number of roots of the polynominal
D(z) within I’y I" ,I's including the boundary is determined, thus:

né 1
k= (% —h— WL) + ’T[— -+ é - V(Ezm/Ezm—l; E2m+1/E2m: ]

EguEgu-1) Aoy =0 (61)

Thus when k=0, h=0, we obtain the following theorem for stability criteria from (61).

[Theorem 5]
In the case when 6=0, a,+0, a,cosnf=a,cos(m—1)8, -+ = a,—, cos(n —m + 1) =0,
Ay cOS (n—m) 80, (m=1), if and only if next Eq. (62) holds, the system (1) is stable,
no 1
(n —m) + R b V (EomlEgm-1, Esmir/Eom +++
Eyu/Ezn-v) (agsinnb-a,cos(n —m)d = 0) (62)
where E2,=0 and E2p is 2p-order principal minor of the determinant E2, in Eq. (48).

5. Example

In the network as shown in Fig. 4, we examine the stability in case the gain of the
feedback amplifier K is 3 and 4.

When K=3, the denominator polynominal D(V'S) os the voltage transmission function

F(VS) is represented as follows.
D(VS) |ges= (VS)3— (VS)2 4+ VS + 12
Using theorem 1, we examine its stability. In this case,
=4, V(=4
Hence when K=3, the system is stable.
Similarly, using theorem 3, we obtain the same result. When K=4, D( 1/:'3") is
represented as follows.
D(VS)|gey=(VS)3—4(VS)2—5(VS) + 12
Using theorem 1, we exmaine its stability. In this case,
notn =4, V() =2
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1, JS-plane
2 x
x
4
—X0 o— o——R,
2 5
-2 x
X K=3
Q K=4
Fig. 6

Hence when K=4, the system is unstable.
Similarly, using theorem 3, we obtain the same result. We show the pole location in

VS plane in case K=3, and 4 in Fig. 6.

6. Conclusion

We have discussed stability critirea for the systemr epresented by ¥ S. This result
can be directly extended into the any other non-integer integral system represented by S*.

In this case, § becomes ,Z;Ji_ and we examined whether the denominator polynominal
D(S") has no roots in the shadowed region including the boundary of the Sv-plane. The
shadowed region differs according to the value of § = ”T” and we can devide into it two
cases as shown in Fig. 7.

Now we show some examples.
Example 1

The denominator polynominal D(S”) of the system function is given as follows.
D (S13) — (SU3)3 _ (SU3)2 1 9

I,  S’-plane

Fig. 7Stable region
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Using theorem 2 or §,

nl 1
n—m+7+*2*=3 (dg e < 0)
1 V3 4, 13
(g2 =573 3 -2)=3

Hence this system is stable.
Example 2

The denominator polynominal D(S*) of the system function is given as follows.
D (S3/2) = (S3/2)3 _ 3(S%/2)2 1 (S3/2) 4+ 5
Using Theorem 1 or 4,

n+n=35
Ve Va 8 Vg _
fe2t2 g 2 T2 19vg, — ):
V(% 58 -5 5 —1272, —5)=3
Hence this system is unstable and two roots lie inside the region between [—%n, %n]

We show the pole location of thoese examples in Fig. 8 and 9. If 6 is above % as shown

I, I,
4 x
.
% MR AN
3% = = R,
- x
Fig. 8 Fig. 9

in Fig. 9, without using these criteria the conventional criteria can be applied to the system.

The reason is if we made the substitution z—=7.6/—"/2) in the denominator polynominal
D(z) in the system (1), D (re/®-"/2)) bedomes the complex coefficient polynominal and we
can examine whether it is the generalized Hurwitz one or not. This method is already
suggested by E. Frank and D.D. Siljak. Nevertheless, these criteria set up by us here are

the more valuable because it does not matter if  is above, -7115 , or not.
Appendix (Proof of (15) and (17) )
Proof of (15)

Let us assume that D*,(r) is plotted for » varying from +oo to 0 as shown in Fig. 10(a).
From the standpoint of the increase of the Argument, the locus in Fig. 7(a) can be thought
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Dy (7 Dy (r)
T=+coS Dy(r) plane 7= too§ Dy(r) plane
|
~
\
>~
0 i 7‘17() ;' \\ ik
@ (b
Fig. 10

to be equivalent to that in Fig. 10(b). Since the Cauchy index I‘;% is the
ar

difference between the numbers of jumps of gf’ E% from +oo to +oo and that of
or
jumps from +oo to +oo, it indicates also the difference between the number of crossings

of the imaginary axis from the even number quadrant to the odd number one and vice

versa in Fig. 10.

Dii(r)
Dyt (n)
10(a) is also equivalent to that in Fig. 10(b), so it doesn’t matter if in Fig. 10(b) we can
investigate the relations between the Cauchy index and the increase of the Argument.

If in Fig. 10(b), we denote the increase of the Argument between S and T by £.

Therefore from the view point of the Cauchy index 19 + , the locus in Fig.

Then we obtain

1o are D __p D)
n{lr‘iargDo(W)—f}ﬁ—I— D;r(r)
and when 7 =+ oo, D} (r) lies on the straight line of tan#f, on the other hand, when
lies at the point C,_,* on the real axis C*,_,>0, in the cse of Fig. 10(b) )
We consider the new locus expressed by the dotted line that rotates by #8 around the
origin starting from the positive real axis and moving in the positive direction. Then we

obtain,

1
;{"O-F—f}:'?

1 /2n6
where n= [E <7 + 1)]
From (55) and (56), Eq. (15) is derived.
Thus, we explain the case of Fig. 10(a).
This is established without losing generality except that n8 lies on the imaginary axis.
In the case of #§ lying on the imaginary axis, we use Eq. (17). Since this equation is
easily proved as in Eq. (15), we shall omit its discussion here.



8)
9)
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