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Abstract

A theoretical analysis is made on the titled subject. First, using the Green’s second
thorem, the scalar potential and the magnetic scalar potential are derived as a solution of an
inhomogeneous Helmholtz differential equation for the electric case and the magnetic case
respectively. Secondly, using a result from the above analysis, the vector potential and
the magnetic vector potential are derived as a solution of an inhomogeneous vector Helmholtz
differential equation for the electric case and the magnetic case respectively. Thirdly, using
the vector (analogue of) Green's second theorem, the same but in a different form
of vector potential is derived as a solution of the same differential equation for either
case electric or magnetic respectively. An identity of the two different forms of a vector
potential which have been derived in different ways, is verified for the respective case.
Finally, the radiation formulae and the Huygens principle in terms of the scalar potential
and the vector potential are given for the electric case and the magnetic case. All solutions
are given by an integral representation.

Introduction

First, the author derives from Maxwell equations the inhomogeneous Helmholtz and
vector Helmholtz differential equations, which define the scalar and vector potentials in a
simple harmonic state, respectively, for each type of electromagnetic field arising from
electric or magnetic soruces.

Secondly, the author derives a solution in an integral form of the inhomogeneous
Helmholtz differential equation, the integral itself being derived using Green’s second
theorem, for each case electric or magnetic. The result just mentioned is used for deriving
a solution in an integral form of the inhomogeneous vector Helmholtz differential equation.

Thirdly, the author derives for each case electric or magnetic another solution in an
integral form to the inhomogeneous vector Helmholtz differential equation using the vector
(analogue of ) Green’s second theorem.

An identity of the above-mentioned two solutions which are derived in mutually
different ways from the inhomogeneous vector Helmhotz differential equation is verified for
each case.

Finally, a set of radiation formulae in terms of scalar and vector potentials are given by
an integral representation, respectively, and the Huygens principle for each potential.
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In this paper, the SI unit system is used and a time factor ¢/*' is suppressed through-
out. In addition, k[rad/m] and a are used as the propagation constant and the unit vector
respectively. For the convenience of mathematical manipulation, formulae for vector

analysis are given in Appendix.

1 Scalar potential and vector potential

1.1 Case of electric soruces

Consider the electromagnetic field due to the electric charge p, [C/m?®] and the electric
current J[A/m?] which are distributed in an infinite, homogeneous, isotropic and conducting
medium. Maxwell’s equations may then be written as

Vo B= %, (I
Vo-H=0, (I1)
Vox H=J+ (jweto)E, (I11)
VoXE = — jouH, (Iv)

where E[V/m] is the electric field, H[A/m] the magnetic field in the medium 1 [Hjm] is the
permeability, € [F/m] the permittivity and ¢ [S/m] the conductivity of the medium.

Taking the divergence of (III) and substituting from (I) thereto, a generalized relation
of continuity is obtained as

o
; j = = 1.
Ford+ (oot~ )p =0, (1.1)
From (II), H can be represented as
1
H-—= 7 Fox A (1.2)

due to a theorem in the vector analysis)). A is called the vector potential and capable of
being given an infinite number of functions.
Substituting from (1.2) into (IV)
VoX (E+ jwA) =0
is obtained. Applying a theorem in the vector analysis?), the last equation will lead to
E+ jwd = —Fy4,
where ¢ is the scalar potential. The electric field is then represented by the equation

E = —ngﬁ—ij . (1.3)

1) I. Murakami, ‘Mathematics for electromagnetic theory’, Vol. I, 1976, Hirokawa Publ. Co. Ltd.,
pp. 69-70, theorem 3.

2) ditto. pp. 67-68, theorems 1 and 2.




Integral representations of scalar and vector potentials. .. 91

Substituting from (1.2) and (1.3) into (III) and using (V. 19)
Volo- A—AgA—R2A+ (jwue+ uo)Vod =ud (1.4)
Substituting from (1.3) into (I)

Vo gp— fulg- A = ’;— (1.5)
Since, as has been stated above, A can be chosen from among an infinite number of
functions, the following supplementary condition may be imposed

Vo-A+ (jwue+uo)d =0, (1.6)

(1.6) may be called a generalized Lorentz auxiliary condition. Upon substitution of this
equation into (1.4) and (1.5), these two equations are transformed to

ApA+12A — —pd, (1.7)

Vo*$+ k¢ = — Z‘ , (1.8)

respectively. (1.8) is the inhomogeneous Helmholtz differential equation which defines the
scalar potential ¢ due to the electric charge p,, and (1.7) the inhomogeneous vector
Helmholtz differential equation which defines the vector potential A due to the electric
current J, under the condition set out in (1.6).

1.2 C(Case of magnetic sources
Consider, in this case, the electromagnetic field due to magnetic sources, which are
characterized by a continuous distribution in the medium of the magnetic charge p,, [Wb/m?]
and the magnetic current J,, [V/m?] instead of p, and J considered in the foregoing section.
Maxwell’s equations may then be written as!)

Vo-E=0, T
Pm
Fo-H—Pm, ar)
¢ K
VQXH:(jw€+a)E, (IT1)
VoxB = —Jp—jou, av)

From (I') E can be represented as
1
E:—*e'—VQXAm (1.9)

due to the same reasoning as before. A4,, is called the magnetic vector potential and may
exist infinite.
Substituting from (1.9) into (III')

1) I. Murakami, ‘Mathematics for electromagnetic theory’, 11, (1976, Hirokawa) p. 274
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VQx[H+(jw+%)A,,] —0 (1.10)
is obtained. From a similar reasoning to before are derived the following relations

H+ (jw + %)A,,, = —FVobm

or
H— —Fopn—(jw+ %)A,,,, (1.11)

where ¢,, is called the magnetic scalar potential.
Substituting from (1.9) and (1.11) into (II') and (IV’)

5 o Pm
Fo-Popm+(jo+ 2= )ro- A, - (1.12)
Voo Ap+dgAy = —€d, + jopel o, —k2A,, (1.13)

are obtained. It is possible to impose the condition due to the reason mentioned above,
Vo-Ap + jopep, =0, (1.14)

which is called the Lorentz auxiliary condition in the magnetic case. Upon subsitution
from (1.14) into (1.12) and (1.13), these two equations are transformed to

Vo*pm+Ropy = — 7, (L.15)
U
doAn+ KA, — —eJ, (1.16)

respectively. (1.15) is the inhomogeneous Helmholtz differential equation which defines
the magnetic potential 4,, due to the magnetic charge p,,, and (1.16) the inhomogeneous
vector Helmholtz differential equation which defines the magnetic vector potential 4,, due
to the magnetic current J,,, under the condition set out in (1.14).

2 Solution in an integral form of inhomogeneous
Helmholtz differential equation

2.1 Derivation of Green’s theorems

Consider a domain ¥ enclosed by a surface S in an infinite, homogeneous, isotropic and
conducting medium characterized by (u, €, o; k) as shown in Fig. 1, where Q (¢, 1, &)
denotes a running source point and P (x, y, z) the point of observation. Assume that the
functions ¢ and ¢ are continuously differentiable scalar functions throughout the medium,
and construct a vector therefrom as

A= Py, @.1)
Substitute from (2.1) into the divergence theorem (V. 25):
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Fig. 1 For Green’s theorems

jVVQ-AdV — [ A-a,ds. (2.2)

From (V. 18)
Vo A=Vq: (WVod) =V oh-Fop + $73é.
Substituting from this equation into (2.2)

L,(Vol/"Vo¢+¢73¢)dV=JS5/’Vo¢'GMS 2.9

is obtained. (2.3) is called the Green’s first theorem. Interchanging the roles of ¢ and ¢ in
this equation and subtracting the ensuing equation from (2.3),

[ Wras—gr3yav =[ ros—¢Fol) -a,dS 24)
is obtained, since Foif-Fop=Fop-Foib. (2.4) is called the Green'’s second theorem.

—jkr
22 p=—"
and J 2+ k%p=0
As shown in Fig. 2, r is the distance vector oriented from a source point Q (¢,7, )
to the point of observation P (#, y, z) and represented as

is a solution to the homogeneous Helmholtz equations 73 +%%=0

r=a, (x——é) +ay(y—"l) +a:(z—é‘) =a,7,
r=V(x—§)%+ (y—£€*+ (z—L)*,

# being the distance and @, the unit vector oriented along the direction from Q to P.
Consider now a scalar spherical wave function

= L (2.5)

)
Y

where % = Vw?ue—jwpue [rad/m] is the propagation constant. For this function
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Fig. 2 Distance vector: r=a, @8 +a, (y—u)+G,(:—() =a,r,
r=V @9+ (y=n +-0°

0 0 0 —jkr—1 o .
Vosb:ax—a?—“i'aya—:/j]“"ax%:ax' 72 EEA]I"‘JF"'
_ —Jkr—1 —(x—§) _jkr _g B, 1
=a— , eI =a, (]k+ r)z/z-l—
. 1
=a,(jb+— ). (2.6)

Likewise, the following equation is obtained

Voth = —a, (jk + %) b=—ryb. (2.6)

Using the above result

i =erob =g [ (e ) e

v
\ TR ety e e
‘ —€\7 . 1N\ edv
e 1Y

As a consequence, ¥ is verified to satisfy the homogeneous Helmholtz differential equation:

ViR —0, @.7)

Likewise, the following equaltion is verified:
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VE3J+k2) =0, (2.7
2.3 Solution in an integral from of inhomogeneous differential equation:
Pe
Pogp+hig=— -

Consider a distribution of electric charge p,[C/m?] in space which is characterized by a
continuously differentiable function. The potential function ¢ for this charge distribution
then satisfies the following inhomogeneous Helmholtz equation throughout the region
where p, is distributed

Pag+irg = — L, 28)

Fig. 3 For the solutions in integral forms of inhomogencous
Helmholtz and vector Helmholtz differential equations

Assume, as shown in Fig. 3, that a point of observation P is located in ¥V and that a
sufficiently small sphere S’ enclosing V' centered on P and with radius « is completely
included within V. Applying the Green’s second theorem (2.4) to the domain V' —V" enclosed
by S+S’ and using ¢ given by (2.5) and 4 as the electric potential ¢

[, @rds—orghav =[_ _@rop—47ef)-a,ds 2.9)

is obtained. The surface integral over S’ appearing on the right hand side of this
equation is transformed as follows

|as
)

where the relations =a and a,=a, have been used. Denoting by " the mean value of

g—jka a¢ g_jka

[ WPob—svoh-ands = [ [ 25—y (jr+ )

—g‘i within ¥V’ and by ¢ that of ¢, the right hand side of the equation is further trans-
"

formed to
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e—ika ﬁ _ 1 e—ika
- r ; SRR 4 2
a on ¢ (]k * a > a } ma.

Assuming that a tends to zero, this equation is reduced to

= —47m$(P), (2.10)

where ¢(P) denotes the potential at P. Since, in this case, V—V'—V, substitution from
(2.7), (2.8) and (2.10) into (2.9) leads to

1 Pe
B = e

1
Yav + Ejs (WP od—4P o) -a,dS . @.11)

This is a solution in an integral form of the inhomogeneous Helmholtz differentil equation
(2.8).
2.4 Solution in an integral form of inhomogeneous vector Helmholtz differential

equation: foA+k2A=—ud

Consider a distribution of electric current J[A/m? in space which is characterized by a
continuously differentiable vector function. The vector potential function 4 [Wb/m] should
satisfy the following vector Helmholtz differential equation

AyA+R*A = —ud, (2.12)

as has been stated in Section 1.1; the electric charge density p, and the current density J
have to satisfy the continuity condition (1.1).

Henceforth, the mathematical manipulations will be made with reference to a rectang-
ular coordinates (x, v, z). (2.12) is then written as

a, (P34, +kA,) +a,(F3A,+k2A,) +a,(P34,+#24,) = —pu(a, ], +a,],+a,],)
or

V(z)Ax+k2Ax = _ﬂ]x ,
s, R4, = —p], (2.13)
V%Ax"*'szx = —:u']z .

The individual equation in (2.13) is an inhomogeneous Helmholtz differential equation
for each component of A=a,A,+a,A,+a,d, and the integral solutions for them are
given in similar expressions to (2.11) as follows

1 1
APy = [ wIdaV s [ Wredi—a ol -a,ds,

1 1
4, (P) = EJV I v + | ] WV od,—A,V oih) -a,dS (2.14)

1 1
AP = —f wlWaV+ | Wred,~AF o) -a,ds.
14 S

Multiplying the both sides of each equation in (2.14) by a,, @, and a,, and summing up
the three equations, A(P) is obtained as
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1 1
A (P) = Tnf,,”"‘/’dv & EJS () (@n- V) A— Aa,-F @}}dS, (2.15)
where
(an'VQ) A= ax(an'VQAx) +ay (an'VQAy) +a, (a,,'VQA,),

the last equation being defined in a vector analysis?).
(2.15) may also be expressed as

1 1 24 i
A(P) =— - 22 40 15’
®) A7 JVMJ¢dV+ 47 .[S<¢J on on )dS’ (183
where
24 b
P = (an'VQ)A: P =a"-VQL/},

A solution in an integral form of an inhomogeneous vector Helmholtz differential
equation can directly be derived using the vector (analogue of) Creen’s second theorem.
This method will be explained in the succeeding two sections. The identity of the result
from the method and (2.15) is verified in Section 5.

3 Solution in an integral form of inhomogeneous vector
Helmbholtz differential equation

3.1 Vector (analogue of) Green’s theorem
Consider, in Fig. 1, two vectors A and B which are continuously differentiable vector

quantities defined in space.
Construct a vector

Bxrox A (3.1
and substitute from this vector into A appearing in divergence theorem (2.2),
jVVQ. (BXV X A)dV :stxVQxA.a,, ds
is then obtained. Since, from (V. 17),
Vo (BXVgXA) =VoXA-FgXB—B-FoXVyx 4,
the last tow equations lead to

jV (FoX A-FgX B—B-FoxFox A)dV = js (BXVox A) -a,dS . (3.2)

This is called the vector (analogue of) Green’s first theorem.
Making a similar equation to (3.2), but, in which the roles of 4 and B are interchanged;

substracting (3.2) from the equation just mentioned and using
VoXB-FoX A =VoXA-VyXB,

the following equation is derived

1) I. Murakami, ‘Mathematics for electromagnetic theory,” I, (1976, Hirokawa), p. 47
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[, (BroxPox A—4-PoxPox BYAV = (AxFox B—BxFox A)-a,dS . (3.3)
This is called the vector (analogue of) Green’s second theorem.

3.2 Solution in an integral form of inhomogeneous vector Helmholtz differential

equation: AfpA+i2A=—uJ

In the following, (3.3) is applied to the domain I — 17" which is enclosed by S+S’ as shown
in Fig. 3.

Now, assume that the vector potential A is equated to A appearing in (8.3) and ya to
B, a being a constant unit vector with magnitude unity and being oriented along an
arbitrary fixed direction throughout an infinite space.

First, the individual vector terms appearing under the integral sign with respect to V
in (8.3) are transformed as follows.

(V. 19) and (1.7) lead to

(VQXVQXA) =VQVQ-A—AQA:VQVQ-A+/€2A+,uJ, (35)
and applciation of (V. 15) leads to
(FoXB) =Fo(pa) =Fopxa+yFoxa =Vypxa, (3.6)

because a differentiation of a constant unit vector a gives a result of null.
Applciation of (V. 18) to rotation of (3.6) leads to

(FoXFoXB) =VoX P oh Xa) =V oV g-a—aVo-Voih+ (@-V o)V gtp— (P iV ) a
= =P+ @Fo)pgh —ak+ @ Vo)V gf,
since V-a and (Fgif-F) @ are zero due to a similar reasoning to before and by the use of
2.7).
In addition, from (V. 16)
VQ(G'VQI,ZI) = (a'VQ)VQ§b+ (VQ¢"VQ)a+aXVQXVQ‘/J+VQl/JXVQXa =] (a-VQ)VQl/f,
since (Fgii-¥ o) @ and FyXa are zero due to a similar reasoning to before and by the use of
VXV gba which itself is due to (V. 21). As a consequence
(FoXFVgXB) = ak¥)+Vq(a-Vg)). 3.7)
Secondly, the individual vector terms appearing under the integral sign with respect to
S in (3.3) are transformed as follows.
Applciation of (V. 2) leads to
(AXVgXxB) = AX Vopxa) = (A-a)F gf— (A-Vgb)a (3.8)
and
(BXFPox A) =axVox A (3.9
Substitution from (3.5), (3.7) through (3.9) into the bracketted terms appearing under
the integral sign with respect to V in (3.3) yields
(B-VQXVQXA—-A-VQXVQXB)
=ta-FoFg-A) +kfa-A+pa- J—A-ak2p—A-Vya-vgp).
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Applying (V. 13) twice
VQ'(l//aVQ'A) = (VQVQ'A)'GQL-FVQ'AVQ'(‘/“‘)
= (VQVQ-A)-at,lr—i—V@-A(Vng-a),
since Fg-a =0,
(B-FgxFoX A—A-FoxFoXB) =Fo- (haVq:A) — (@-V o)V o- A—A-Tg(a-V o) + pa- Ji.
From (V, 13)
Vo-L(a-Fih) A) =Fg(@a-Fol)- A~ (a-Fgh)Fo- 4.

The volume integral in (3.8) is then transformed to

[ o Warg-4)—Fo-((a-Fgh) A} + pa-Jfjav .

v-v’
Application of the divergence theorem (V. 25) to the first two integrals appearing in the
last equation leads to

= (aro- A (a-Fof) A} -a,dS+ | pa-Tpav
S+8’ v-r’

— a.j (ha,so- A— (@, AV g} ds+a.j uddv .
S+8’ v-v’
Using (3.6), the bracketted terms appearing under the integral sign with respect to S+5'
in (3.3) yields
(AXVQXB—BXVQXA) = AX (VQIIJXG) —l/JaXVQXA
== (A-a)VQl)[‘— (A'VQS[J)(I—(,[IGXVQXA

from (V. 2).
The surface integral of (3.3) is then transformed to

[ (a-apgh—(a-rgha—yaxrox 4)-a,ds

S+S8”7

[ (A-a) (Fgp-a) — (A-Fg)) (@-a,) —a,: (@XTgx A)}dS

5+s’
Applying (V.1) to the third term in the above integrand, the last surface integral is
reduced to

—a-[ (@ Fo) A—a,(A-Fg)) +ia,xFox A)dS .
S+s’
Applying from (V.2) the relation
(@, X A) XVogp = — (- A)a,+ Fh-a) A,
the surface integral is further reduced to
—a-[  ((@XA) XPgl+ia,xPox A)dS.
S+’

(3.3) is therefore written as follows
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a-f yJ¢dV:a-j (—daFo A+ (@, AV g
v-v’ S+’
+ (@ X A) XV g +p@, XV g X A}aS

Since @ is a constant unit vector oriented along an arbitrary direction, an identity
between the integrals themselves should be satisfied, namely

| wpav = (—dafy A+ (@, Aol
v—v’ S+8”
+ (@ X A) XV gt +fa, XV g X A}dS . (3. 10)
Consider then the surface integral over S’ where r=a and a,=a,:

J- [M e—ika a,VQ‘A_}" (a',A)a,<jk+ —;‘>

s’ %

6Ajka

a

e-ika  p—jka
+

+ (a,x 4) Xa,(jk+ %) a,xVQxA’dS .

a

Applciation of (V.5) to the second and the thrid terms appearing in the above integrand
yields
g—fka . 1
:J {— a,VQ-A+A<]k+—>
s a a
If a is assumed to tend to zero, the last formula is equated to

=47 A(P),

e_jka e—Tka

a,ngxA] as . (3.11)
a

Summarizing, the solution A(P) is derived as follows:

1
AP) = EJ udiy dvV
4

1
+EJ {fa,Vo-A— (@, A)F gh— (@, X A) XV gf—pa,xVgx A}dS .  (3.12)
S

This is the solution in an integral form of (3.4)

4 Solution in an integral form of inhomogeneous scalar and vector
Helmbholtz differential equations for magnetic case

Assume that the magnetic charge p,, [Wb/m?] and the magnetic current J,, [V/m2] which
are characterized by a continuously differeniable function respectively are distributed in
an infinite, homogeneous, isotropic and conducting medium. In this case, the confinuity
condition

Vo-dw + jipm —0 (4.1)

should be satisfied throughout the medium.

4.1 Solution in an integral form of inhomogeneous Helmoltz differential equation:

V%¢m+k2¢m = P—I;‘
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The solution can be derived in a similar fashion to Section 2, and the result is given as
follows:
baP) = L[ P2 pav o[ @ Pabu—bnTol)-ardS (42)
4 ), p 4n g
4.2 Solution in an integral form of inhomogeneous vector Helmbholtz differential
equation AyA, +k*4, = —¢€ I,
The solution is derived in a similar fashion to Section 2, and the results is given as

follows:

1 1
AuP) = | edupaV + o | o A (@ AwFod
Vv S

— (@, X A ) XV gh— @, XV g X Ap}dS (4.3)
and
1 1
A, (P) = ZEI edupdV + j (W (@ g) A— AtV g} dS (4.4)
|4 S
or
1 1 A, d ,
Am(P)z_EJ eJ,,,gde+47j (Lp_m——Amgii)dS (4.4")
14 S

5 Identity of (2.17) and (3.11); (4.3) and (4.4)

In the foregoing sections have been obtained A(P)and A,,(P) in two different expressions.
However, the identity of (2.17) and (3.11) is verified as follows.

{anXVQ) X (LLA)}E = (a,,XVQ).,,(l/JA;) - (anXVQ) { (L/JA-q)

:(cos y%ﬁ-——cosa%?)AH—lﬁ(cos y%zi —cosa a(;%})
( b ap 24, 24,
— cosa%——cosﬂ—g>A,’—¢<cosoc o —cos f 5 >

— (@ X P ) Ar— (@ XV h) 4,

04 04 04 0A
+L/1<cosy ag —cosa a; —cosocfé;”—+cosﬂ b§">

N {(u”XVQSL)XF}H"L(COSa% +cos § 3;45,, + cos y‘a;? )

04 oA 04
__g[j(COS a-f + cos a a'q” + cos o ag“ )

—{(@, XV o)) X AYe—p cosa Vg A+ Fy
The 7 and & components of {(a,XFg)X (bA)} are obtained likewise, resulting in
(@,XFg) X (fA) — (@yxVgh) X A—ha,Vo- A+F. (5.1)
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On the other hand

o) ()

(anXVQXA)g—Cosﬂ< o

#

04 04 0A4
£ cosp a;r-%cosyjag—l)

= (COS o

0A4 0A 0A
—(cosa?i + cos ﬂa—ng + cos y%)

—Fi—a,-V,y A,
then
a,,XVQXAl,[’:f,[/ F— (@,-Vg) A (5.2)
is obtained. Substituting from (5.2) into (5.1)

(anXVQ) X (ll/A) = (anXVQ) XA—IibanVQ'A+an><quA¢+ (an'VQ)A‘;[’
= (G”XA) XVQl/’_ (auVQ¢)A+ (an'A)VQ'r/j
_l/IaNVQ'A+anXVQ><A(/j+(an'VQ)A¢;

and using the relations

(@XVoh) X A = — (A-Vol)a,+ (A-a,) Vo),
(@ X A)XPgh — — (A-Vgih)a,+ (a, Vo) A,

finally

(a,,XVQ) X (SZJA) — (a,x A) XVQI,[/+ (a,,-A)VQQIJ-l—a,,XVQXAI,ZI—L/I a, VQ~A
+i(@, Vo) A—AVy)-a, (5.3)

is obtained.
From (V. 1)

a-(@,XVo) X (hA) = (a,xFg) - (hA-a) — a,-Fox (Axa) ,
then, referring to (V. 28)

a | (@,x<F) X (h4)aS = [ Vox (pAxa)-dS [ (fAxa)-de—0
S S Cc

is obtained. Since, in the last equation, S is a closed surface, C does not exist and the intgral
should therefore vanish. As a consequence

a.j W a, g A— (@, AV gh— (a,x A) XV oth—i) a,x A)dS
S
—a-[ (@, 7o) A-AVg)-a,)ds,
Ly
which leads to

| Whanro-A— (@, )P gh— (@yx A) XF gf—i) a, XV o X A}dS
)
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~[ W@nro)A—AVgp-a)as.
)

Identity of (2.17) and (3.11) has thus been verified. Identity of (4.3) and (4.4) can also
be verified quite likewise.

6 Radiation formulae

6.1 Electric case

Let the distribution of p, and J be restricted to remain within the domain ¥, and let
the surface S be removed with V extending to infinity in all directions (Fig. 4). Provided
that % is purely real, the surface integral will remain finite. However, in a medium met
in reality, & is possessed of a very small imaginary part even in a perfect dielectric medium.
The surface integral will therefore vanish due to the attenuation, and the following equa-
tions should be satisfied.

1 op,
b0 = [ Sdar, 6.1)

1
A(P) = ’EI plipav, 6.2)
|4

N

or pMEWb/mﬂ)
JalV/m?)

a.

e

x

Fig. 4 For radiation formula (Sources exist in V only,)

6.2 Magentic case
Let the distribution of p,, and J,, be restricted to remain within the domain V, and let
the surface S be removed with V extending to infinity in all directions. Then, by a

similar reasoning to the foregoing case are derived the following equations.
1 Om
bu(P) = —— | E2ypav, (6.3)
47 gy M

A, (P) = %j edn pav. (6.4)
14
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7 Huygens principle for potential functions

7.1 Electric case

When the electric charge p, and current J are distributed outside of S but not in the
domain V' (Fig. 5), the potential functions due to the soruces and at an arbitrary point P in
the domain 17 are given by

1
$(P) ;EL W Vop—4 Vo) -a,ds, (7.1)

1
A(P) = EJ Wpa,ry-A—(a, - A)V y)— (a,x A) XV gb—y a, XV yx A)aS (7.2)
S

(7.1) and (7.2) may be called representing the Huygens principle in terms of the scalar
potential ¢ and the vector potential A respectively.

x
Tig. 5 For Huygens principle (Sources exist out of S only.)

7.2 Magnetic case

When the magnetic charge p,, and magnetic current J,, are distributed outside of S, but
not in the domain ¥/, the potential functions due to the soruces and at an arbitrary point
P located in the domain V are given by

1
bnB) = [ WTodm—bntob) ayis, (7.9
1
AulP) = EL Wa,lo-Ap— (@, AV o
—(a,xX4,,) XVQ‘,[J—‘JJ anXVQXAm}dS. (7.4)

(7.3) and (7.4) may be called representing the Huygens principle in terms of the
scalar potential ¢, and the vector potential A,, respectively.



The solutions in an integral form of inhomogeneous Helmhotz and vector Helmholtz
differential equations have been derived for the electric case and for the magnetic case, and
the duality of the two solutions, namely A(P) and A,(P) derived in different ways

Integral representations of scalar and vector potentials. .- 105

8. Conclusion

respectively, have been verified.

It is essential to recognize the fact that the principle of duality holds between the

corresponding electric and magnetic equations.

In a future paper continued from this, the Hyugens principle in terms of the electric

field and the magnetic field will be discussed.
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Appendix Formulae of vector analysis.
A.(BXC) = B-(CxA) =C- (AXB): circulation law of scalar triple product
Ax (BxC) = (A-C)B— (A-B)C: vector triple product
AX (BXC)+Bx (CxA) +Cx (AXB) =0
(AXB)-(CxD) = (A-C) (B-D)—(4-D) (B-C)
(AXB) X (CxD) = (AXB-D)C—(AXB-C)D
B = (a-B)a+ (axXB) xXa

w WB =y
4y =S4y d
dit(AxB):‘%xBJrAx%f—

V($+) =Vg+ri

V($h) = Y7 -+ 47

V-(A+B) =V-A+V-B

V-($A) =P A+gr-A

VX (A+B) =V XA+VXB

VX (pA) =FV$X A+¢V X A

V(A-B) = (A-V)B+ (B-F) A+ AXV X B+BxVx A
V- (AXB) = B-F xA—A.V xXB

VX (AXB) — AV-B—By-A+ (B-¥)A—(A-V)B
FXVXA=py-A—4A
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(V.20)

(V.21)
(V.22)

(V.23)

(V.24)

(V.25)

(V. 26)

(V.27)

(V.28)

(V.29)

(V. 30)

(V.31)

(V.32)
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FXA)XA = % VA2+ (A7) A
FPXVé=0
V-FxA=0

Distance vector r from a point ( (¢, n,§) to another point P (x, y,2) is given
by r=a,(v—£) +a,(y—) +a,:—) =a,, r—V (x—8)%+ (y—m)*+ (@—E)2,
where a,,a,,a, are fundamental vectors in the cartesian coordinates (x,y, z),
a, the unit vector from QtoP, 7 the distance between Q and P,

Ppr = —For =3, Fpxr—=Fyxr—0,

VP(’%) = —Vo(%)= —a, 712' " V%(——})=V§<%>:O

Concerning any surface S surrounded by a closed path C, or any domain V'
enclosed by a closed surface S,

| V¢dV:js¢ds

14

J V-AdV = J A-dS . divergence theorem
v s

ijAdV:j AxdS
v s

j ASxr$ — j ¢ de
s c

f VXA-dSzI A-de : Stokes’ theorem
s c

I (V¢-V¢+L//V2¢)dV=j ¥ $-dS : Green’s 1st theorem
v s

'[ Wr2g—gpr=l)dv =J WV$—¢rif)-dS : Green’s 2nd theorem
14 s

: vector (analogue of )

| (F XAV XB—A-F X7 XB)AV = | AxV xB-dS ,
- " Green’s 1st theorem

j (B-V XV XA—A-F XV X B)dV — j (AXV X B—BXV x A) -dS
14 S

! vector (anatogue of ) Green’s 2nd theorem



