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—— Basic Consideration on Rail Deformation ——

Seinosuke ARAI

Abstract

The deformation of rail or wheel in the lateral direction in view from large scale is considered
to make little influence to the stability or the derailment of a railway car in running. This report
aims to clear the extent of its influence and begins with basic problems. They are friction
variation with spin motion and deflection of rail.

1. General

In the preceeding reports the auther described about the running stability and the safety
of railway cars especially on their derailment phenomena. In connection with running
stability or derailment of railway cars, the statics between wheel and rail were studied.
Wheel-tire and rail were supposed to be rigid except the partial deformation at the surface
area of tire-rail contact.

This report describes the fundamental analysis on the deformation of rails provided
wheel-tread with various inclination. Rails are simpified to long and thin steel plate with
one of the long and parallel edges clamped and the other free. Wheels are also simplified to
steel cylinders which edges are cut to form planned cut angles representing wheel franges or
wheel-treads.

2. Statics of Cylinder with Taper Edge on Thin Plate

2-1 Setting a taper-edge cylinder on thin parallel plates

Let a taper-edge cylinder and thin plate call wheel and rail respectively. In case that
the wheel slides downward to rail, as in Fig. 2.2, equiliblium of forces acting to the wheel in
vertical and in lateral leads the following equations ;

NCOSQ’+,UON Sina—W=0 .................................................................. (21)
Fs’_N Sin a+#ON coS a:o ............................................................... (22)
where p, represents frictional coefficient of wheel to rail.

In case that no sliding occurs under the wheel-rail friction the following equations hold ;

NCOS&'+#N SiHCI*W:O ..................................................................... (23)
FS_N Sina+/lN COSQZO ..................................................................... (24)
where 0< < 0, and then ;
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Fig. 2.2 Wheel sliding downward

Fig.2.1 Model of rail and wheel in contact

NCOSQ’"’#ON Sina_WgO .................................................................. (25)
FS;N Sin a+’u0N CcoS ago .................................................................. (26)
At the critical condition the above-mentioned eqs. (2.1) and (2.2) hold again.
In the certain range of angle ¢, the wheel slides downward at first and rail is bent which
makes the spring force F; increase. For small angle ¢, however, F; does not increase and
it holds zero. To find a critical value of angle ¢, let Fs=0 in the egs. (2.1) and (2.2);

N COS @at 0N SIN @a— W =) +eeeresererserssesemitisiiniisisis e (2.7)
N SiN @a— 0N COS @ag=0+++++++sresnsasersmssririssstisimesiists s (2.8)

where @, represents a critical value of ¢ in downward sliding of wheel.

Thus,

i 10 Qs el (29)

W
2\
N(1+,Uo)— COS Qua

Denoting 4 to the frictional angle, then we have ;

ﬂo:tanﬁor ad:@ .............................................................................. (2’11)
N(1+tan®0)= 4

or N:WC050 ................................................... (212)
cos 64

Downward critical angle a, which is a,, is equal to the frictional angle 4. Note that to fit
the above-mentioned analysis the wheel has to be set on the rails almost statical way, that
is, no inertia force is produced.

2.2 Releasing the force after pushing the wheel downward

Assuming that the angle ¢ is larger than the critical value @, in the preceeding section,
we can see the forces acting to the wheel are ballanced after sinking with broadening the
width between rails.

At the equiliblium condition, if the wheel be loaded by 24W, it will sink until the
resultant force becomes zero. In a certain range of angle @, the wheel moves upward after
removing the load 24W which is sufficiently heavier than the component of frictional force
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between rail and wheel on moving upward minus wheel weight.

For the comparatively large angle ¢, that is ¢ = @, where a, represents critical value of
a for upward sliding of wheel, the unloaded wheel does not move upward under wedge effect.
In this case, the direction of the frictional force is oppsite to that when the wheel slides
downward. So in the similar way to downward sliding of wheel ;

NCOSau_,UoN Sin au*WgO ............................................................... (213)

N SiN @ut 10N COS @u— Fs=1() wreeerernrnnnnunmmmansninnitiitiiitiiiiiieees (2.14)
Then

COS @u— o SIN Qu >ﬂ ........................................................................ (2.15)

sin @u+ o cos au ~ Fs

Substituting @, = g -8,

%;% ........................................................................... (2.16)
tan (3_3)2}1’ ................................................................................. (2.17)
At the critical, that is Fs =00,
tan (8—0)=0, B=6 or au:%—ﬁ ...................................................... (2.18)
As remarks of this chapter, by denoting 8 to frictional angle,
1) a0 : Rail is not deflected.
2) «a g%— 6 : Wheel is fixed after removing heavy load due to the principle of wedge
effect.
3) 6<a <§— 6: Rail is deflected by the wheel weight plus or minus the vertical compo-
nent of frictional force.
o) (0,0.h)
- . ar " 0 =b

Fig. 3.1 Deflection distribution on z-x plane Fig. 3.2 Deflection distribution on y-z plane
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3. Apparent Frictional Coefficient When Spin Motion Exists

3.1 Pressure distribution over the surface of contact area

The contact surfaces between wheel-tread and rail take the shape of ellipse® with ¢ and
b being long and short semiaxes respectively.

Let denote % to the maximum deflection as shown in Fig. 3.1 or Fig. 3.2, where coordi-
nates are oriented as in these figures. Assuming that the deflection be expressed as the

followings ;

z:h—#yz AL A=) wrmvevomnommsns s et e g ss e s e s s s v S Ve S e s (3.1)

_ h s _

Z*h77x aty—O ........................................................................ (32)
and also

et Bt (3:3)
Using these expressions, we again assume the force function like ;

f O RS — (3.4)

(N ot
tt

spin=0

s L

Fig. 3.3 Elliptic surface of contact area Fig.3.4 Spin motion added to parallel motion

spin=0

~#,N

Fig. 3.5 Simplified characteristics of frictional force
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Thus
N:f-/f(x, y)dxdy .............................................................................. (35)

where N represents total pressure or force over the surface of contact area.

3.2 Sliding with spin motion
Figure 3.3 shows an elliptic area of contact zone. » means relative sliding speed between
wheel and rail. F, means frictional force and is expressed like ;
TR RSN ———— (3.6)
and

N:'/‘/f(x' y)dxdy ............. T (37)

Figure 3.4 shows that spin motion is overlapped with sliding, where @ represents angular
speed of spin. Figure 3.5 is a simplified characteristics of frictional force, which is necessary
on the calculation of apparent frictional force including spin motion.

3.3 Execution of integration to obtain the value of £
Substituting (3.4) into (3.5) and using (3.3), we get ;

e N O
N=khab [ ay IS(I—XZ—YZMX

where XZ%, y==<L

b
_4 vy o4 S S A TR
N=gkhab | (1= Y?*)2aY =gkhabx ST~ khab (3.9)
Thus
S—; 2 ---------------------------------------------------------------------------------------
k habrrN (3.10)
v along x axis
T I ¢ «
" '
Yy

friction force

ae

Fig. 3.6 Apparent spin center £ Fig. 3.7 Slip direction of wheel around point £
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3.4 Change of frictional force by spin effect

Denoting », to the peripheral speed of spin at the point (¢, (), that is the edge of contact
elliptic area, » to the speed of parallel motion in the y direction, and 7, to the ratio »/v,, then
7p is suitable to express the apparent spin center, which is represented by E in Fig. 3.6.
e=0at »,=0, and e=+1 at »,=—1. It is clear that the following relation holds ;

BT Ty e e e o 8 i 8801 NN N0 IR S0 SO S R ik (311 )

Denoting E in Fig. 3.6 to the apparent spin center, the left side of line x =ge moves
upward, whereas the right side moves downward, so that the difference of frictional forces
of both sides acts in the y direction. Let the integration of frictional force in the y direction
name apparent frictional force, then apparent frictional coefficient is defined by the ratio of
apparent frictional force in the y direction to the normal force.

Denoting x,F (e ) to the total frictional force in the y direction, it is expressed as follows ;

a yx
#oF(e):~ﬂo/:a _/:yxcosa'f(x' V)dxdy, < @ wreerrressmmnniniiii (3.12)

where § is shown in Fig. 3.7.

tan 6= _y .................................................................................... (3.13)
x—ae
then
x—ae

cos f= y2+(x_—ae)2.' TS G T e (3.14)

and from the expressions (3.3), (3.4) and (3.10) ;
o= 2N X VEN e

S, =2 (122 (3.15)

Substituting (3.14), (3.15) to (3.12), we obtain ;
__I® Vi x—ae C2N ([, x* ¥
Fle)= ,[adx r/:y,\‘ \/3/2+(x—ae)2 abm \ a’ bz)dy

2N =X (g/b) (X —e)1—X*—Y?)
= 2N "
Vg [ld /:/H” VY2 +(a/b) (X —e)? e
— 2N 1 ------------------------------------------------------------------
77[11()(, e) dX (3.16)
F/N

Fig. 3.8 Change of F/N by e
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where X =x/a, Y =y/b and
(T (a/b)(X—e)1 =X V)
(X, ) '/:W JY?*+(a/b(X —e)

dy

Representing as,
(ﬂ/b X—e )# A x

J1-XZ 2 =
I(X, e)= 2Axf %MY A T-X2/1- X+ A%

+2Ax( /2 llog (V1= X2 +V1+ X2+ A%/ VALY oo (3.17)

where p(e) represents apparent frictional coefficient. Figure 3.8 shows the variation of the
value of F(e)/N with e.

4. Deformation of a Rail by an Axial Load of a Wheel"?

The problem is simplified to that a thin plate cantilever is acted by a concentrated load
at the free edge.

Consider a plate in the shape of infinite length with width « and thickness %, which is
clamped along one of its parallel edges, the other edge being free. Let the plate be
acted by a vertical concentrated load P whose point of application is at the free edge as
shown in Fig. 4.1. A Cartesian co-ordinate system Oxyz is introduced, such that the y-axis
is in the longitudinal direction, the x-axis is in the direction of width and the z-axis is
perpendicular to x-y plane, which are shown in Fig. 4.1.

Fig.4.1 Cantilever plate co-ordinate system and load at point A

Thickness % of the plate is assumed to be far smaller than width ¢, and the weight of
the plate is neglected in the expression. The vertical deflections, which is represented by
w(x, y), are characterized by a homogeneous biharmonic equation,

P A@(x, )T soeeeeeereresmmmeminmntiras sttt s (4.1)
which is valid throughout the regions under consideration except for a singular point A.
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e

4.1 Applying a vertical concentrated load P at point A
The equation relating the deflections to the shearing forces, bending moments and
twisting moments are
Qx=— D(wxxx+ Wxyy)
Mx=—D(wxx+ viwyy)
My=— D(wyy+ viwxx)
Myy= *Myx:D(l_V)wxy
where v is Poisson’s ratio, D =E/®/ {12(1—1?)}, E is Young’s modulus and the subscripts x
and y attached to » indicate partial derivatives. For example :
_ d*w ;
Wiy = W .......................................................................................... (4'3 )
Concerning the equations (4.2), the boundary conditions written in terms of the deflection
w, are as follows: Along the clamped edge,

w(0, y)=0
wx(()' y):() } ....................................................................................... (4.4)
and along the free edge,
M.(a, y)=0
Q@ Y)=0 b vereeeeremm e (4.5)
Mx(a, y)=0
so that,
[wn+uww] (@, Y)=0 corrrrerr e (4.6)
[M’xxx+(2_l/)wxyy] ([l, )T () e e 4.7)

where equation (4.7) is equivalent to the requirements Q.(z, y)= 0 and Mx(a, v)=0.2
The shearing force Q. must be continuous along x = @, except for the point of application

A of the load, where @, has discontinuity. The corresponding transition condition is

formulated by replacing the concentrated load P with a forcing function F (y) defined by

Fig. 4.2 Deflection curves along free edge, x/a=0.75 and 0.5
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F(y)=p for |y|<68 }
F(y)=0 for 6<|y]|
where 2p6 = P, and by subsequently taking the limit as § —0.
Using the Fourier integral representation for F(y), the required condition on @, now
becomes,

— D[wxxx+ was] (a, y):-/o‘mﬁsn{giaacos @YAQ e (4.9)

4.2 Solution for deflections in integral form
The problem formulated in the preceeding section is to determine the biharmonic
function w(x, y), which satisfies the boundary conditions.
To this end it is expressed that,
w(x, y):/()wf(x, N P ——— (4.10)
with
f(x, a’):(A’-i-B'afx)cosh a/x+(C'+D'a/x ) SINh @ +oeerrrerrrerererereea, (4.11)
is a solution of equation (4.1) for arbitrary choice of the functions A'(«), B'(«), C'(@), and
D'(a).
The deflection curve along the free edge is obtained using partially numerical calculation.
Figure 4.2 shows the deflection curve by y/a as the abscissa.

5. Remarks

The quantity of torque with spin motion, its effect to rail deflection and experimental
results will be described in the proceeding reports.
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