On Weierstrass Points Whose First Non-gaps are Five

Jiryo KOMEDA

Abstract

Let N be the additive semigroup of non-negative integers. A subsemigroup H of N is called
a numerical semigroup if the complement of H in N is finite. If @ is the least positive integer
which belongs to H, then we say that H starts with . In this paper we give sufficient conditions
on a numerical semigroup H starting with 5 such that / is equal to the set of nongaps of some
point of a curve (in this case H is said to be Weierstrass), where a curve means a complete non-
singular 1-dimensional algebraic variety over an algebraically closed field of characteristic 0.

Introduction

Let H be a numerical semigroup. Then the number of the set N-H is called the genus
of H, which is denoted by g(H). Let C be a curve. For any point P of C, H(P) denotes
the set of non-gaps » at P, i.e. non-negative integers » satisfying

Then H(P) becomes a numerical semigroup. If H(P) starts with ¢, then by abuse of
language « is called the first non-gap of P.

Now there is a long-standing problem as follows : describe a necessary and sufficient
condition for a numerical semigroup H to be Weierstrass. If H starts with 2, then it is equal
to H(P) where P is a Weierstrass point of a hyperelliptic curve. If H starts with 3, then
it is Weierstrass!. If H starts with 4, then it is also Weierstrass?. In this paper we will
describe sufficient conditions on a numerical semigroup H starting with 5 to be Weierstrass.
In fact, our result is the following : let H be a numerical semigroup starting with 5 and let
M(H) be the minimal set of genevators for H.

0) If #M(H )<3, then H is Weierstrass®.

(1) Let M(H)={5<a:1<a:<as}). Suppose that one of the following holds :

=Y

) 2as=a:+ a2 mod 5,

) 2a:=a:+as mod 5 and 2a:= a\+ as,
)

)

o

2ai=a:+as mod 5, ax+a:=0 mod 5 and 2as=2a,+ a:,
2a1=a»+as mod 5, ai+a:;=0 mod 5 and 2a:22a,+ as.
Then H is Weierstrass.
(2) Let M(H)=1{5, 5¢:+1, 5q:+2, 5qs+3, 5q4+4}. Suppose that one of the following
holds :
a) q:ta.=q:+aqs,
b) 2¢i—qs—qi—120 and 2q:+1—q—q2=20,

a0
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C) 2¢:—q1—q320 and 2qs— q:— q.=0.
Then H is Weierstrass.
Using the above result we will show that any numerical semigroup of genus g<7 at least
except <5, 7, 11, 13> is Weierstrass, where for positive integers ao, a1, **, @n 1, <ao, a1, -,
a»-1> denotes the semigroup generated by «o, ai, ***, a».,. Moreover, we will investigate
whether a numerical semigroup of genus 8§ < g =10 starting with 5 is Weierstrass.

§1. 5-cyclic numerical semigroups.

Definition 1.1. Let » be an integer with »=2. A numerical semigroup / is said to be
n-cyclic if H starts with » and if there exists a triplet (C, 7, P) where C is a curve, T is
its automorphisn of order » with C/<T>=P' and P is a fixed point of 7 with H(P)=H,
where (T is the group generated by T.

In this section first we will give a description of a 5-cyclic numerical semigroup H.
Using this we will show that any H with #M (H )=4 is not 5-cyclic and give a necessary and
sufficient condition for H to be 5-cyclic.

Lemma 1.2. Let H be a numerical semigroup starting with 5. Then the following are
equivalent:

(1) H is 5-cyclic,

(2) there are non-negative integers n,, na, ns and n, with 5 ¥ n,+2n2+3ns+4n, such
that

H =<5, mi+2n:+3ns+4ns, 2n+4n.+ ns+3ns, 3n1+ na+4ns+2n.,
A, +3n2+2n3+ n.

Proof. H is 5-cyclic if and only if the following situation holds : let C be a curve defined
by an equation of the form

ng

4
y5: iI;Il

: (o =)

where ¢,;’s are distinct elements of k£, and »,, n,, s and ». are non-negative integers with
4

5/ 2 in;. Let f: C—P' be the surjective morphism of degree 5 defined by sending any
i=1

point P of C to (1, x(P)) and let f~'((0, 1))={P.}. Then H=H(P.). Therefore it suffices
to calculate H(P.). Hence the proof is complete®. Q.E.D.

Remark 1.3. Let H be a numerical semigroup starting with z. Then we define a set of
generators for /, which is denoted by S(H ), inductively as follows. Let so=a. If so<s,
<---< s, have been chosen and i < ¢—1, then s,., is defined by the least integer in H having
a-residue distinct from those of sy, 51, -, s;,. Then we set S(H )= {so, s1, -, Sa—1}. Inthe
case of Lemma 1.2 we have S(H )= {5, b, b, bs, b} where we set b, = n,+2n,+3ns+4n,, b,
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— 9+ Ans+ ns+3ns, bs=3m+ ne+4ns+2n, and bi=4n+3n2+ 205+ na.

Propositon 1.4. If H is a numerical semigroup starting with 5 and satisfying #M(H )
=4, then H is not 5-cyclic.

Proof. Suppose that H is 5-cyclic. We use the notation in Remark 1.3. In view of
4M(H )=4 there is a unique ;€ {1, 2, 3, 4} such that b, M (H ). In the case ;=1 we have
M(H):{5, b2, b3, b4}. Hence b,=b.+ b4 OF b1=2bs. If bi=bs+ b, then

ni+2n2+3ns+4ni=6n1+7n+3ns+4n,,
which implies that »,=#.=0. Hence

H =<5, 3ns+4ns, nat+3n, dns+2n, 2ns+no
:<5, n3+3n4, 2713+ 7l4>,

which contradicts #M (H )=4. If b,=2bs, then
20+ 30+ 4ns=6n+2n:+8ns+4n.,
which implies that »#,=#n;=0. Hence
H =45, 2n2+4ns, 4nz+3ns, n2t2ns, 3nz+ne
=<5, n2+2n4, 3nztn,

which contradicts #M (H )=4. Similarly, in the cases /=2, 3, 4 we have a contradiction.
Q.E.D.

Proposition 1.5. Let H be a numerical semigroup starting with 5 and let S(H )= {5, 5
+1, 5¢2+2, 5qs+3, 5q.+4}. Then H is 5-cyclic if and only if q+aq.=q:+qs.

Proof. If H is 5-cyclic, then b,+ b= b+ bs Where b,’s are as in Remark 1.3. This
implies that ¢,+g¢.=¢:+qs. Conversely we suppose that ¢ +qg:=q2+qs. Consider the
following simultaneous linear equations with unknowns n., n., #s, 74:

nmi+2n:+3nst4ns=5q:+1
2ni+4n+ ns+3n:=5q:+2
3ni+net+4ns+2n,=5¢s+3
dmi+3n:+2n3+ na=5q.+4.

In view of g+ q:=q.+gs these are equivalent to the following:

m=ns—3q+qg.+t2qs+1
N2=—Natq1+q2—aqs

Nn3=—ns+2q— q-.
Hence the solutions of the above are
(m1, n2, ns, na)=(—3q+ a2 +2a:s+1, i+ a2—as, 21— a2, 0)+ R(1, =1, =1, 1).

By Lemma 1.2 it suffices to find a solution consisting of non-negative integers. In the case
2¢»= ¢, +qs; we may take
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(1, na, ma, n)=(—q+2qs+1, —q1+2g:—qs, 0, 2¢:— q2)
as a non-negative integer solution. In the case 2¢,< ¢, + ¢, we may take
(1, nz, ma, n)=(=2q1+2q2+qs+1, 0, ¢:—2q2+qs, q:+q2—as)

as a non-negative integer solution. Q.E.D.

§2. Numerical semigroups H starting with 5 and satisfying #M (H )=4.

In this section we will give sufficient conditions for a numerical semigroup H starting
with 5 and satisfying #M (H )=4 to be Weierstrass. Let M(H )={a,=5, a:, a», a;}. First
we investigate minimal relations among «,, @., @ and «,.

Lemma 2.1. Let M(H)={av=5< a1< a2<as}. We set
a:=Min{e€N 22| ea.E<ao, **, ai-r, @i, -, asd)

Jor all 0=i=<3. Then we have the following.
Case A.1 (resp. Case A.2): 2a;=a,+a. mod5 and a:+as=0 mod5 (resp. a1+ as=0
mod 5). Then

ao:aﬁzgﬁ (resp. %‘—ﬁ and a\=a>=a;=2.

Case B.1 (vesp. Case B.2) : 2a,=a,+ as mod 5 and a:+ as=0 mod 5 (resp. a1+ a2=0 mod
5). If 2a:=a,+ as, then

ﬂr):% (resz). %‘Lﬂ and a\=a:=as=2.

Case C: 2a,=a>+as mod5 and ai+a,=0 mod 5. [f 2a:22a:+ a., then

at+a
ao:Tz, a\=3 and a:=as;=2.

Case D : 2a,=a,+as mod 5 and a1+ a;=0 mod 5. If 2a.=2a,+ as, then
a,tas

(ZO:T, a=3 and a.=as=2.

Proof. In the Case A.1, 2¢,=a; mod 5 and 24,=a, mod 5. Hence we get

+ —
%aozmmav 201:%%”31
_ 2a:—a, _2a3—a—a:
242——5;00*‘01, 2[13—#00"‘(11*‘612.

Permuting suffixes 1 and 2 in the Case A.1 we get the result in the Case A.2. In the Case B.1,
2a,=a> mod 5 and 2a;=a, mod 5. Hence we get
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+ 2a,—
(”Tasao:aﬁ-aa, Zalzd‘Tazaosz,
202:204?—!0300”#031 2a3=M5_i+al.

Permuting suffixes 1 and 3 in the Case B.1 we get the result in the Case B.2. In the CaseC,
we obtain 3¢:=as mod 5, 2a2=as mod 5 and 2a:=2a,+a. mod 5. Hence we get

3a,—as

ata
4—2ao=a1+az, 341:‘-5—“£Zo+(13,

5
2(12:4—2025_ s do+ds, 203:‘—_2a3_25a1_a2*(10+201+CZz.
In the Case D, we obtain 34, =a. mod 5, 2as=a. mod 5 and 2¢:=2a:+ a3 mod 5. Hence we

get

ata 3a:—a
l's‘:!‘ao:dl+d3, 301:’?_200'% az,

202:%—2—:1_—0100*‘201‘{’(13 and 203:2L?iﬂo+ dz. QED

Theorem 2.2. Let H be a numerical semigroup with M(H)={ao=5<a<a:<as}.
Subih that one Of tho followino holds

vl jOUWRWS UES.

(A) 2a3=a.+a: mod 5,

(B) 2a:=a:+as mod5 and 2a.Za,+ as,

(C) 2a1=a.+as mod5, ai+a-=0 mod 5 and 2a:22a.+ a,

(D) 2a:=a,+as; mod5, ai+a:=0 mod 5 and 2a:22a,+ as.
Then H is Weierstrass.

§3. Numerical semigroups H starting with 5 and satisfying #M (H )=5.

In this section we will give sufficient conditions for a numerical semigroup H starting
with 5 and satisfying #M (H )=5 to be Weierstrass.

Lemma 3.1. Let H be a numerical semigroup starting with n. Assume that M(H )= {a,
=n, @\, >, an). Iu denotes the kernel of the k-algebra homomorphism ¢y k[Xo, X1, -+,
X 1] —k[t] defined by sending X, to t*. For any i and j with 1<i<j<n—1, we set

fz‘j:Xin_Xg“'j)Xr(z‘.j)
where a;+a,=eli, j)n+arcy. Then for all i and j, we have e(i, j)>0. Moreover, the
ideal Iy is gemervated by f;’s (1=i=j=n—1).

Proof. 1f e(i, j)=0, then this contradicts a,.,, e M(H). Let J be the ideal generated

by fi’s. Inview of a.+a;=eli, j)aot arus, we get J S 1n. Conversely we will show that
I,<J. It is known that the ideal /, is generated by the element of type

I xX¥—1I X¥, vipe:=0.
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If /=11 X¥—TI X*1Iy and f+0, then we have 3 v,>1 and 3} x#, >1, because of ¢,&
M(H ). Moreover,

S=F I X = foo IT XE'+ XE9OX i [T XY — XEPP X rpy TT X B
=X X iy IT X —XEPP T X mod J.

Hence we may decrease the weight of f, because ¢(i, 7)>0, e(p, ¢)>0, J =1, and the ideal
[y is prime. Therefore, at last we get f=J. Q.E.D.

Let M(H )={av=5, a\, az, as, a;}. First in certain cases we will give minimal relations
among ao, @i, a2, as and s

Lemma3.2. Let M(H)={ay=5 a:i=5q¢:+1, a:=5¢:+2, a:=5q5+3, a:=5q.+4}.
Suppose that 2q,—q—qs=0 and 2qs— q.—q.=0. We set
a.=Min{eEN 22| aa.E<ao, -, ai-1, aivr, -, as).
Then we have av=q,+qi+1 and a1=a:=as=a,=2. In fact,
0, 0) Aolo= Qo1+ Qosads, a01:&’o4:1,
1, 1) a1a1= QioQo+ A12az, (1’10:201_112, 0’12:1,

2) A202= A20Q0+ Q2141+ @230, (1/2022(12_01_43, 21 =23=1,
3,3) A303= 300+ A32a2+ A34a4, A30=243— q2— qa, A32= Q3= 1,
4

4, ) AsQs= Aaolo+ Ws3s, 0’40:2(14*‘1*(]3, @s3=1.
Moreover,

1, a/r)|611+a'3zdz:((110+020)00+02303,

1, 0/01611+d4303:(a’10+020+a’30)ﬂo+03404,

2

Ar2az+ aosas=(az+ @30t @ao )do+02101,

2)
3)
3) @r2@2+ @iz = (@20t aso)ao+ azia: + @saas,
4)
4)  awastaciai=(aso+ aw)aot as:a.

Proof. We have

(g2t qs+1)— (@1 +qi+1)=2¢:— g1 — g3+ 2gs— q2— q. 2 0.

Hence @o=¢:+¢.+1. Computations show the remaining part. Q.E.D.
Applying Lemma 3.1 to our case we get the following :

Propositon 3.3  Let the notation be as in Lemma 3.2.  Suppose that 2q:—q—qs>0 and
23— q2—q.«>0. We set

&1= X3, 82= XG0, g5= X0, g4= X&o0, g5= X801, g86= X,
g7:Xgn, gs= X5, 8= X{o, g10=X%, g11= X%, g12=X{a.

Let S be the subsemigroup of Z° genervated by
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b,:Ci(l§i§8), bo=e tezt+estes—es bio=—eit+estes,
bn=—e1—e2tester and bio=—ei —ex—estestes.

where Z°® is the set of row vectors of dimension 8 with integral coefficients and for each i,
¢, denotes the row vector with i-th coefficient 1 and other coefficients 0. Then we get Iy=
n(Kern)k[X] where

v/ k[Y]:k[Yl, N le]_'k[Ts]ses
(resp. n: /e[Y]—"k[X]:k[Xo, Xy, -+, X4])

denotes the k-algebra homomorphism defined by n(Y.)=T" (resp. n(Y:)=g:). Moreover
S is saturated.

Proof. Let < | >: Z®*XxZ®*—Z be the pairing defined by <», a>=r‘a for any » and «
=Z%% We define the map

Uy : k[Tbi]1§z';1z—'k[H]
by sending 7% to ¢***" where
y
A:(amdo, a20Q0, A3000, Qs0lo, Qo1d1, A21A1, U324z, A43d3).

Then we have ¢y © 7= ¢y o 1, which implies that y(Kerzr)SE Kerguy=1y. Conversely we will
show that /4 S 7(Kerz)k[X]. By Lemma 3.1 the ideal ], is generated by foo, fi1, foz, f33, fas,
fiz2, fis, fes, fos and fss Where f;;’s are polynomials in k| X | associated to the relation (7, ;)
in Lemma 3.2, e.g. foo=X&— X X¢« In fact,

ar+a>=(2g:—qs)ao+as, as+az;=2gs+1—q)ao+a: and >+ as=(g2+qs+1)ao.
Then we see  X5— X3 "X = for + X397 99 f15, XF— X3P X 1= fas+ X397 % f34
and XoXs— X9 = foa— X707 foq.
Moreover, the following polynomials in %[ Y] are contained in Kerr :

Yl Yz Y3 Y44 Ys Yg, Ys Ys* Yl YIO, Y7 Ylo_ Yz Ye Yll,
Ys Yn* Y3 Y7 Y12, Yg le_ Y4 Ys, Ys Y7_ Y] Yz Y11, YsYs_ Y] YZ Y3 YIZ,
VioVs— Ye Y12 Yo Y3, YieYo— Y2 Y3YiVe and Vi YVo— Vi Y. Yo

By calculation we have /xS 7(Kerz)k[X]. Hence we get Iy=n(Kerr)k[X].
Lastly we will show that S is saturated. It suffices to show that

12 12
g}l R.b:NZ*= El Nb,.
Let us take y= i s:b;€Z* with s, R.. Then we may assume (0<s,<1 for all ;. Now
i=1

)7:(314‘59*810_311‘812, S2tSe—S11— S12, S3 1+ S9— S12, Sat So,
Ss5— St S0 T S11 T S12, Set S10, S71+ S11, ssts12)EZ°.
In the case s,+ s¢— s10— 11— S12= — 2 we have

Szt So—S11—S12= —2+ 10— S1+52<0,
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which implies that s,+s,—s,,—s;,=—1. Hence we may assume that
y=(-2—-1,0,0,21,1,1).

Now
12
,\’:b3+b7+bw+b12€ gle,.

In the case s,+ sqe—$10— 511 —512=—1 we have
Ss—Set S0t St Siz2=85s5+81+1.
Moreover, s,05;:+0 or si2+0. Hence we may assume that
y=(-1,-1,0,0,1, 1,1, 0)=be+bu
or

y=(=1, —1,0,0,1,0,0, 1)=b3+b12.

12 \
Therefore we get y& 31 Nb,. The case of s,+5s—s510—511— 51220 and s2+Se— 1, — S12=
=1

—1 does not occur. Hence we get our desired result. Q.E.D.
In the case of 2¢.— ¢\ —¢3=0 or 2¢s— q.— q.=0 we also obtain the result which is similar

to Proposion 3.3. Hence we get

Theorem 3.4. Let [ be a numerical semigroup with
M(H):<ﬂo:5, d1:541+1, 612:502+2, 03:5(13+3, a4=5q4+4}.

If 2g:—q1—qs=0 and 2q5—q.—q+=0, then H is Weierstrass®.
In the similar way we get the following :

Theorem 3.5 Let H be a numerical semigroup with
M(H)={ao=5, a\=5q:+1, a:=5q:+2, as=5qs+3, a.=5q.+4}.

If 2¢:—qs—q:—120 and 2qi+1—q1—q.20, then H is Weierstrass.
Proof. Replacing suffixes 1, 2, 3 and 4 in the proof of Theorem 3.4 by 3, 1, 4 and 2
respectively, we get the proof of Theorem 3.5 Q.E.D.
Lastly we show that the condition of Theorem 3.4 and that of Theorem 3.5 are disjoint.

Remark 3.6. Let
I1={(q1, a2, @5, a)EN"[2¢:—q1— 4520, 2¢5— g2~ q.20}
and
J={(a, a2, a5, 4 )EN*|2¢:—qs—q:— 120, 2¢:+1—q1— 220},
Then we have /1 NJ =¢.
Proof. Let (qi, q2, g3, q.)€1NJ. Since
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(2q2 _01_613)+(203-42_Q4): _((2(11_43_44—1)+(244+1'—(11_(]2)),
(q1, qz, g3, qs) satisfies the simultaneous linear equatuions
201—qs—qs—1=0, 2q:—q1— q3=0, 2g:—q2—q:+=0, 2qs+1—q1—q.=0.

Then the solutions of the above are

) 0>+R(1, 1,1, 1)

o=

(a1, g2, as q,.)=<i =
’ : § y 51 51

Since ¢,’s must be integers, this is a contradiction. Hence we obtain /NJ=¢. Q.E.D.

§4. Numerical semigroups of genus g <10 stating with 5.

In the last section applying our results we will investigate whether a numerical semi-
group of genus g <10 starting with 5 is Weierstrass.

Example 4.1. Any numerical semigroup of genus g<6 is Weierstrass.

Proof. Tt suffices to show that all numerical semigroups starting with ¢=5 are Weier-
strass’?. All numerical semigroups of genus 3 start with 4<4. Any numerical semigroup
of genus 4 except <5, 6, 7, 8, 9> starts with z<4. Numerical semigroups of genus 5 starting
with ¢=5 are the following :

5.1) <6,7, 8,9, 10, 11> 5.2) <5,7,8,9, 1D 53) <5,6,8 9
5.4) <5,6,7 % 5.5) <5,6,7, 8.

Now 5.1) is the set of non-gaps at an ordinary point. 5.2), 5.3), 5.4) and 5.5) are negatively
graded, which implies that they are Weierstrass®”. In the similar way any numerical
semigroup of genus 6 starting with z=6 is Weierstrass. Numerical semigroups of genus 6
starting with 5 are the following :

6.1) <5,8, 09, 11, 12> 6.2) <5,7,9 11, 13> 6.3) <5,7, 8, 11
6.4) <5,7, 8, 9 6.5) <5,6,9, 13 6.6) <5,6, 8 6.7) <5,6, 7.

By Proposition 1.5, 6.1) and 6.2) are 5-cyclic, hence Weierstrass. By Theorem 2.2, 6.3), 6.4)
and 6.5) are Weierstrass. Moreover, 6.6) and 6.7) are generated by three elements, which
implies that they are Weierstrass®. Q.E.D.

Example 4.2. Any numerical semigroup of genus 7 at least except <5, 7, 11, 13) is
Weierstrass. I don’t know whether <5, 7, 11, 13> is Weierstrass or not.

Proof. Numerical semigroups of genus 7 starting with ¢>7 are negatively graded,
which implies that they are Weierstrass. For any numerical semigroup H we denote by

w(H ) the weight of H, ie. w(H):é (n;—1) where g=g(H) and ., -, ng are the

i=1
elements of N —H. Then we note the following result: if a numerical semigroup H
starting with « satisfies w(H )< a, then H is Weierstrass®. Numerical semigroups H of
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genus 7 starting with 6 which satisfy w(H )=6 are the following :
7.1) <6,7,8 9  7.2) <6,7 8, 10> 7.3) <6,7,8, 1D 74) <6,7,9, 10>
First we consider the case 7.1). Let C be a curve defined by an equation of the form
ye=(x—ci)x—c2 X —cs)x—ca)*

where ¢,’s are distinct elements of 4. Let f: C— P' be the surjective morphism of degree
6 corresponding to the inclusion k(x)Ck(x, y)= K(C) where K(C) is the function field of C.
If {P.}=7"(0, 1)), then we have H(P.)=<6, 7, 8, 9>. In the case 7.2) if we set H =<6, 7,
9, 10>, then the ideal /, is generated by

XS_X2X3, X]Z*X()Xz. 1Y22_X0X3 and Xg_Xon.

Hence [ is Weierstrass®. In the case 7.3) the semigroup is 1-neat, hence Weierstrass®.
Lastly we consider the case 7.4). Let E be an elliptic curve with the origin Q" and let P;,
P; be two distinct points of £ such that P;+P;+Q’. Let P/=—2P;,—2P;. Take z€ K(E)
such that div(z)=P/+2P;+3P;—5Q". Let 7: C—FE be the surjective morphism corre-

sponding to the includion K(E)CK(E)(y)=K(C) with y:zé. We set {P;}=r"'(P/) for
i=1, 2, 3. Suppose that Q" =+ P/ for /=1, 2, 3 and that 3P;+3P;=’. Then we have

dch(y):P1+2P2+2P3_7T*(Q’),
dive(dy)=—27(Q)+ Ps+ P+ 2 x*(R)

where R|, R;, R; and R} are points of E which are distinct from P{ P;, P; and Q'
Moreover, for any »& N and any f= K (E) with divE(f):PEE n(P")P’ we obtain

dive( £55) =GP+ (= 1IP+ 3 Gr(P+1+2(7—1)P,
+ Q)= 7= Da*(Q)+ 2 (n(R)+Dx*(R)+E n(P)x* (P')

where 3" means the summation over all P’ E except P{, P;, P;, R;’s and Q’. For any
divisor D" on E we set

L(D)={feK(E)|div(f)=—D'} and {(D")=dim.L(D").

Hence for any r={0, 1, 2, 3, 4}, ){f{, has no poles if and only if f= (D)) where

4 4
Di=—Pi~Pi~ Pi—Q+3 Ri, Di=—2Q'+3 R}, Di=—3Q'+ 2 R,
D;:—4Q'+P2'+P3'+g R} and D:.=—5Q’+Pz’+Pa’+§71 R:.

Moreover, we obtain

{(Do)=1, I(Do—P{)=0, {(D1)=2, (Di—P)=1(D1—2P/)=1,
[(Di=3P()=0, I(D;)=1, (D;—P)=0, [(D3)=2, I(D5—P/)=1,
[(D3—=2P{)=0, I(DV)=1, (D= P/)=0,
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which imply that N — H(P,)={1, 2, 3, 4, 5, 8, 11}, hence H(P)=<6,7, 9, 10>. If H is a
numerical semigroup of genus 7 starting with 5 which satisfies #M (H )= 4 and w(H )25, then
it is one of the following :

7.5) <5, 6, 13, 14> 76) <5,7,9, 1D 7.7) <5, 7,9, 13>
7.8) <5,7,11, 13> 7.9) <5,8,9, 11> 7.10) <5,8, 9, 12>.

In view of Theorem 2.2, 7.5), 7.6), 7.7) and 7.9) are Weierstrass. Moreover, 7.10) is
Weierstrass®. Q.E.D.

Example 4.3. All numerical semigroups of genus 8 starting with 5 at least except <5, 9,
11, 12> are Weierstrass.
Proof. Any numerical semigroup of genus 8 starting with 5 is one of the following:

<5, 11, 12, 13, 14>, <5, 9, 12, 13, 16>, <5, 9, 11, 13, 17>, <5, 9, 11, 125,
<5, 8, 12, 14>, <5, 8, 11, 14, 17>, <5, 8, 11, 12>, <5, 8, 9, <5, 7, 13, 167,
<5, 7, 11>, <5, 7, 9, <5, 6, 14>, <5, 6, 13>.

By Proposition 1.5 and Theorems 2.2, 3.4, 3.5, we get our result. Q.E.D.

Example 4.4. All numerical semigroups of genus 9 starting with 5 at least except <5, 11,
13, 14, 17>, <5, 11, 12, 14, 18>, <5, 11, 12, 13, 19>, <5, 9, 12, 16> and <5, 8, 14, 17> are Weierstrass.
Proof. Any numerical semigroup of genus 9 starting with 5 is one of the following:

<5, 12, 13, 14, 16>, <5, 11, 13, 14, 17>, <5, 11, 12, 14, 18,
<5, 11, 12, 13, 19, <5, 9, 13, 16, 17>, <5, 9, 12, 167, <5, 9, 12, 13,
<5, 9, 11, 17>, <5, 9, 11, 13>, <5, 8, 14, 17>, <5, 8, 12, 19,
<5, 8, 11, 17>, <5, 8, 11, 14>, <5, 7, 16, 18>, <5, 7, 13>, <5, 6, 19.

Applying our results in sections 1, 2 and 3 to these cases we get the above statement.
Q.E.D.

Example 4.5. All numerical semigroups of genus 10 starting with 5 at least except <5,
12, 13, 14, 21> and <5, 11, 13, 14> are are Weierstrass.
Proof. Any numerical semigroup of genus 10 starting with 5 is one of the following :

<5, 13, 14, 16, 17>, <5, 12, 14, 16, 18>, <5, 12, 13, 16, 19,

<5, 12, 13, 14, 21>, <5, 11, 14, 17, 18>, <5, 11, 13, 17, 19,

<5, 11, 13, 14>, <5, 11, 12, 18, 19>, <5, 11, 12, 14>, <5, 11, 12, 13>,
5,9, 16, 17>, <5, 9, 13, 17, 21>, <5, 9, 13, 16>, <5, 9, 12>, <5, 9, 11D,
<5, 7, 18>, <5, 7, 167, <5, 6>, <5, 8, 17, 19).

Applying our results in sections 1, 2 and 3 to these cases, we get the above statement.
Q.E.D.
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