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Abstract

The magnetic moment at a finite temperature M (H, p, T) is expressed as a superposition of
M(H, v, O). The rigorous calculation about M(H, #, O) for a potential of general shape is given.
The rigorous relations among the total current I, 21*¢jx>, 21%¢jx>, and the size effect AM are
derived, which will be powerful for the derivation of some integral theorems in some specified
potential in the succeeding paper.

Introduction

There have been a number of papers concerning to the size effect in Landau
diamagnetism and to the current distribution near the boundary. However, a clear answer
has not, the author believes, been given as yet in the sixty years elapse since the first paper
of Landau'~?,

Two different methods for this answer are found. The first is the direct calculation of
wave functions using some approximation such as W.K.B,, leading to much different conclu-
sions by different authors®=®. It has an intrinsic difficulty. Enormous magnitudes of the
magnetic moments e.g. oc f ! are derived in the process of calculation, and the answer is
their minute difference e.g. o« H°. In order to obtain an approximate answer e.g. oc H° the
calculation of the term e.g. o< H ! must be exact and no approximation is allowable.

The second is the calculation of linear response by Green’s function, leading to a
conclusion of very small size effect®!?. Although it is elegant and powerful, the theoretical
basis for its validity is not clear. The moment at 7=(0°'K is known to have an intrinsic
singularity at H =( as a function of the magnetic field H#*. It happens to be linear at a finite
temperature or in an inhomogeneous field, as a result of smoothing effect. However, it
doesn’t imply that other quantity such as the size effect 4M or the current density J(x) is
linear at a finite temperature.

In this paper discussions are given of some rigorous formulas valid in a potential of
general form, which will be used in the succeeding paper in order to derive some integral
formulas in the potential of an infinite step function. And also of some features often
regarded to be somewhat paradoxical.

Received October 2, 1989



172 Research Reports of Knagawa B-14 (1990)

Fundamental Processes

Let us consider free electrons confined in a box LL,L. in a homogeneous magnetic field
H in the z-direction, expressed by the vector potential [0, (L+x)H, 0]. The appearance of
Landau diamagnetism with infinitely slowly increasing field is viewed to be a quasi-static
process consisting of three fundamental processes ;

1) Drift of orbits in the x-direction and compression of density. The Lorentz force by
this drift and the electric field in the y-direction just cancel.

2) Energy increase by the inhomogeneous electric field and dilation of density in the E-
space (E; energy). The compression in x-space and the dilation in £-space conserve the
density in E-x-space constant.

3) Non-dissipasive relaxation near Fermi level.

These three processes complete the circulation of the center of orbit in £-x-space. For
infinitely large L, the drift velocity at x =0 is infinitely large. Here exists the reason of the
paradoxical arguments at the ealier period. Landau’s approach is first to calculate the grand
potential ©Q neglecting the contribution from the surface and next to calculate its derivative®,

Q=—kTX log [1+exp {(u—E:)/kT}]
—M=09/0H

Teller’s approach is first to calculate the derivative concerning to an individual electron
and next to calculate the sum?. The contribution from the surface is by no means negligible.
Both the contribution from the bulk and that from the surface are enormous, and the sum is
their minute difference.

—~M=3(0E;/0H )/ [1+exp {(g—E.)/kT}]

Once it is noticed that both approaches are just similar to the Euler’s or Lagrange’s in fluid
mechanics, the apparent paradox completely vanishes. An individual electron near the
surface drifts infinitely quickly for infinitely large L. So that the derivative 9E./0H near the
surface doesn’t give the contribution to 92/6H in the surface but to that in the bulk. So that
both approaches naturally give same result.

It should be stated in addition, that such an explanation often found in the text is
erroneous that the state density is scarce near the surface so that the paramagnetic current
near the surface is smaller than the diamagnetic current inside the bulk. As shown later and
more explicitly in the succeeding paper, the state density is surely lower, but the normalized
wave function is localized near the surface so that it has larger charge density compared to
that of a complete orbit inside the bulk. The average charge density in F-space are quite
the same in surface and in bulk. The reason of the appearance of the diamagnetic moment
is that it is similar to an alterating series as a function of £. The initial term at the lowest
level is always diamagnetic so that the statistical average is diamagnetic.
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Calculation

Let us start from the formula for the magnetic moment M derived from the grand
potential @,

M(H, p, T)=—0R(H, ¢, T)/oH (1)
Q=—kFTX log[1+exp {(g—E:)/kT}] (2)

This is rewritten as,

M, T)= [ | = [0 % ar | /12RT)0+cosh (v )k T dv
=f0 M(H, v, O)/[(ZkT){1+c05h((V—ﬂ)/kT)}]du (3)

where p denotes the state density. This formula shows that any M(H, x, T) at a finite
temperature is expressed as a superposition of M(H, v, 0) at 0K integrated over y.
Hereafter we discuss M(H, #, 0) and its superposition.

Let us consider a free electron in a uniform magnetic field in the z-direction, confined in
abox LL,L.(—L<x<0). With the vector potential [0, (L+x)H, 0], the Hamiltonian and
the current operator in the y-direction ; are written as,

# = 2m ——pi+ % mw*(x—a) +ﬁp§+ Vix) (4)
j=—ew(x—a) (5)
with
_eHd _ ch)
W= ot F L— (eH ky (6)

The surface potential V (x) is of general form near x =( and of its mirror image near x = — L.
Writing the derivatives of the energy levels E[k., n, w(H), a(H, ky)] with constant £, and
n, such that,

Fram bR AN

these are also written in terms of the expectation value of the current <{;) as,

[3—5]ky:<[§-§} >:—%(<jx>+L<j>) (7)
[(£] do 0] 0B] __L(y—ac) 8)
[£ ) [22] =-£52[E] =—Liz+axp (9)

we define by >1*¢;> the sum of the current expectation value in half volume (—L/2<x<0),
as to wave functions in this region, which yields macroscopic current. And by X4 the sum
as to electrons centered in this region, which yields, in addition, edge current near x=—L/ 2.
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From eqs. (1, 2, 7),
- ﬁ] s Lo :
m=|2| -2 Lo+ (10)
Since X (Gad+LGY)=L ¥ GO+ <jx>+x<g:/'2<(L+x)j>, and the sum of the second
and the third term is independent of L, the total current [/ is,
LI=32%<j>=c(oM/dL) (11)

From egs. (7, 8, 9), the next two relations are derived.

ool E oo ()
E]AEL o m[EL o

If 7 is concentrated at the boundary like §-function, it yields a moment M, without size
effect. From egs. (7-13), substituting the integral by £, by the integral by ¢, and counting the
spin factor 2, we obtain, :

~m=—Liri=-19"
= a2 G ()L Lo |3 flo - tra S da]] (14)
By symmetry,
JloE—w+arEaa=2 [ |00 E | g1 f | % (15)
So that the left of eq. (15) differentiated by L is,
211 Vda|=(n+ )ho— [, OE-da= (20— R+ ) hw (16)

where R is definded such that,

(s 27
From eqs. (14, 16) we obtain,
—Mi/(LLyL)= [ dkeir <Ch>2<2n R+%) ho (18)

Averaged over (N —1/24+08)<R<(N+1/2+6), (N ; integer, 0=6<1,)

> ( ):%5(1—(3);@

n

Again averaged over 0<¢§ <1 then 3} ( )=(1/12)hw, and next integrated over —kr=k.=<
kr (kr; Fermi wave number),
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2

- 1 f g
~T/(LLyL)=—+ J/Ly——lzﬂzmcz keH (19)

This is just the Landau diamagnetism independent of the form of surface potential.

Now let us consider about the current distribution near the boundary and the size effect
of the moment AM.
From egs. (12, 13),

AM=M— L% £ 51+ ¢y (20)

Substituting eqgs. (14, 15, 16) into eq. (20), we obtain,

AM =— fdeZLyL)Z<C—2)znt[2[L/2[ E aﬁ]d L<n+ >ha)] (21)

The integrand is rewritten by egs. (6, 13),

8E 8E me , .

Yo YonT e IF (22)
Substituting eq. (22) into eq. (21) and taking into account that the integrand in bulk is just
(n+1/2)hw, we obtain,

%AM=EI<]'A:>:fa’kzié;%f(%);[(mw>f <;x>da+D,,<n+ >hw] (23)

where D, denotes a length a little larger than orbit radius such that the wave amplitude is
exponentially negligible. The first term in the right corresponds to 3¢ <{jx>, yielding the
moments of the edge current near x=— D,, which is just subtracted by the second term.
This relation (23), rigorous for a potential of general shape is the main result of this paper
which will be powerful to derive some integral theorems in the specified potential in the

succeeding paper.

Conclusions

Any magnetic moment M(H, u, T) is expressed as a superposition of M(H, v, 0)
integrated over p, so that we can give a general argument from M (H, x, 0) as a function of
#. The rigorous formula of eq. (23) valid for a potential of general shape shows the relation
among AM, 33* <jx>, and 3¢ {jx», which will be powerful for the derivation of some rigorous
integral theorems. The quasi-static drift of orbits is the clear explanation of the equiva-
lence between Landau’s approach and Teller’s. The explanation of diamagnetism by the
smaller state density in E-space near the surface is erroneous.
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