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Abstract

The current density distribution J(x) in Landau diamagnetism, for any given x, converges to
be linear to the magnetic field H with H—(0. However, it never converges uniformly for all x.
For | x | € Rr (Rr; orbit radius), J(x) is linear to H and has been solved completely. Linear
response theory happens to give a correct result only for it, however, it fails for J (| x | ~ Rr) or for
the size effect AM.

1. Introduction

In a number of papers concerning the size effect of the moment AM in Landau
diamagnetism, several different conclusions by a few different methods were given!~®.
Among them, only Ohtaka and Moriya’s laborious work gave, in addition to a value for AM,
a solution for the current density distribution j{x)”. Green’s function method was used
there with no approximation required, while in most of others some approximation such as
W.K.B. was required®®. However, the theoretical basis as to whether such a linear
response theory is applicable or not, is not clear. The moment at 7"=0°K is known to have
an essential singularity at H =0 as a function of H”. It happens to be linear at a finite
temperature or in an inhomogeneous field, as a result of smoothing effect. However, it
doesn’t mean that other quantity such as 4M or J(x) must be linear at a finite temperature.
An a priori assumption that a linear response theory is applicable, led to a logical result that
both 4M and the amplitude of J(x) are o< H', whereas several of others predicted that AM
is oc 7' and far larger. The conclusion that the result has no memory of cyclotron orbit
radius at Fermi level R, which is important in the results of other several, seems rather
unconvincing to insight.

This paper will show an exact treatment without an a priori linear theory nor any
approximation more than free electron assumption. It will clarify that Ohtaka and Moriya’s
linear solution is correct only in the region nearest to the boundary and that the apparent
paradox is comprehensibly explained by the concept of uniform convergence in mathematics.
The same surface potential as theirs (an infinite step function) is assumed, however, most of
the argument keeps the generality applicable also to a finite work function in a further study.
It treats the case of a sufficiently weak field and still sufficiently large system size: ;r'<Rr
<L/2 (kr; wave number at Fermi level, L ; system size), i.e. 2krL ' < e H/ch< k%
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Let us begin with the above-mentioned smoothing effect. The current density distribu-
tion at T°K ;
J(x, T, #)———f[z ji(x)S(E—E:)] f((E—u)/kT)dE is expressed as an average of J(x,

0, #):‘/‘#[2 j(x, E:)8(E—E:)] dE with a slowly varying weight function of v, namely,

JGx, T, )= [7(x, 0, VI F (v—p)/RT)ET] dv M

We can verify this relation by integrating by parts. Here, E; and j.(x) denote the energy
and the current density distribution respectively of one electron state j, and f the Fermi
distribution function. Hence we shall hereafter concern ourselves with J(x, 0, 1) denoted by

J(x).

2. Wave Function

Consider a free electron confined in a large box .LL,L.(—L<x<0) of infinite step
function surface potential in a uniform z-direction magnetic field. With the vector potential
[0, (L+x)H, 0], the wave function of an electron takes the form ¢(x, E, a)exp (ikyy
+ik.z )(LyL:) "% where a= — L —(ch/eH )k, denotes the x-coordinate of the center of orbit
7,9)

The current (y-direction) expectation value <;> of an electron and the current density
created by all electrons J(x) are defined from the current operator j=—ew(x—a),""

Gr=—ew f(x—a)l é|2%dx, J(x)=2 —ew(x—a)| ¢(x, E, a)|*LyL: (2)

where w=e¢H/mc denotes the cyclotron frequency. The adiabatic principle leads to the
relation that™®

& _majy @)

#(x, E, a) for a&— D, is a well-known harmonic oscillator wave function. Here, D,
denotes a distance slightly larger than the radius R, of complete orbit of a state with a
guantum number #, such that the wave function is exponentially negligible at x—a=D..
That for — D, < a also satisfies, in the region x <0, the harmonic oscillator wave equation
generalized to non-integer eigenvalues. Both even and odd solutions diverge at x=—oo as
well as, if extended to 0<x with the surface removed, at x=+o0. Some suitable linear
combinations converge at x=—o0. The boundary condition ¢(0, E, a)=0 requires E to be
a dependent variable of 4.

With a real phase factor, ¢(x, E, a) is

¢(x, E, a)=a'u(t, r)/[[: [u(t, 7)]Pdt]" @

with
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Fig.1. Curves 7. (a): a: center of orbit. (r+1/2)he=E—(hk:)*/2m, E: energy. a*=mw/h.
These curves are the trajectories of nodes of wave functions centered at x=0 and convergent

at x=+o00,
azzm—f?, t=alx—a), <r+%)hw:E (2’;‘,) . b=—uaa, (5)
and
[gtz—t +(27+1)]u(t #)=0 [u(—o, r)=u(b, r)=0] 6)

For a<—D,, r is an integer: r=%. For —D,<gq it deviates from %, which we write as
rn(a). Its inverse function is represented by 4,(7). Fig. 1 shows curves of 7,(a) (or a.(7))
which start from the points (¢=—D,, »=#) and extend to »=R [(R+1/2)hw=p— (hk.)?/
2m]. We can also regard these curves as the trajectories of the nodes of wave functions
centered at x =0(¢=0) and convergent at x =+ oo,

It is readily verified by direct differentiation and from eq. (6) that

2ftu2dt—[t2 274+1)] u —( %’;) (7

Insertion of egs. (4) and (5) into eq. (2) yields

<j>=—(%)a [: tuzdt/I: utdt (8)

Inserting eq. (7) into eq. (8), combining it with eq. (3) and taking into account that #(—oo, 7)
=u(b, r)=0, we get

29 o (W) [ wdt=a"[$0)? &)

3. Current J(x)

Let us consider the Taylor series for J(x<0) at x=0. From its definition in eq. (2), both
J(0)ocXa [#(0)] 2 and J'(0)< 2 [2a¢’(0)— $(0)] $(0) vanish. In the second derivative J“(x)
N[~ {4’ +2(x—a)p }p—2(x—a)é?], all terms except the last ocg? vanish at x=0.
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Hence L,L.J (0)=ewX2a [¢'(0)] % According to eq. (9) we can rewrite L,L.J (0)=

ewX4daa*(0r/oa).
Let us carry out the summation over states, namely, over k., £y and ». The statistical

factor for summation ; 2LyLz(27z)‘2ffdkzdkyZ‘,,l is transformed into 2L,L.(271)? fdszn

f (eH/ch)da, by transforming the integral by k, into that by ¢"*. Then we can write

(Lo 0= [ ak2 B Vsewa'S, [~ o 5 )da 10)

Rewriting F(R)=Y, f— a(ar/aa)da=fR [2,— an(7)] dr, let us consider what is re-

presented by 3, —a.(#») in Fig. 1. The solid curves on the right half plane represented by
positive ¢’s are just the mirror image of the dotted curves. Hence . —an(#») corresponds
to the sum of g-coordinates of the dotted curves minus the sum of z-coordinates of the solid
curves on the left half. Its integral over 10< » <11 just equals the area with virgules denoted
by Si». The lowest order term in the asymptotic expansion of S, for m—oo is (2m+1)2/
2a [10].

Since the integrand is positive or zero, F(R) is a monotonically increasing function.
Hence, substitution of F(R=N+48) [N ; integer, 0= 8 <1] by F(N ) creates only an error of
higher order. We can therefore carry out the calculation for eq. (10) firstly summing the
lowest order asymptotic term in S, over 0<m <N and secondly integrating over —kr<k.
<kp.

770 = e’ 4 C hi
J'0)= Samc EAH +H.0. (; higher order terms) 11)

Hereafter H.O. denotes higher order terms. The ratio of H.O. to the lowest order term is of
O(N-7) ie. of O(H”) (y>0). Similarly as in the derivation of J"(0)x aX —4b(9r/da),
succesive differentiation of eq. (2) together with ¢(0)=¢'(0)=0 and also eq. (9) yields that
JO0)x @* S —12(37/8a), J“(0)oc a*2166[(27+1)— 6*1(37/da) and J(0)oca*280[{(27+1)
— b2} —5%)(97/0a). Odd order derivative has a factor of even function of 5, while even order
one has a factor of odd function. The calculation for J®(0) is carried out exactly, since the

5 . . m m+1
contribution over m<r<m-+11s o3}, f(ar/aa)da: Eo <f dr>= m+1.
n= m
In order to investigate the calculation for J*(0), let us consider the contribution over 10

< r<11, denoted by dJ“(0), in the example in Fig. 1. It takes the form dj®0)=3 fo“ (b,
n 1

11

7) (ar/éa)da=_/;0 [Z:o f(b, r)]dr. Since f is odd, X} f is the sum at the solid curves on

the left half minus the sum at the dotted curves. Hence 31,f(b. 11)=0 and X,/(5, 10+¢)
- f(—aai(r), 10+¢) for e»0. By interpolation we can evaluate, for an intermediate value
of » (r=10+8), that 3,£(b, 10+8)=(1—8)f(—@a(10+48), 10+48) with an error of only
higher order. Besides, substitution of f(—aa.o(7), ) by f((2r+1)"?, »)=0 creates an error
of only higher order in 47(0) [10]. We therefore conclude that the lowest order termoc m??
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in dJ“(0) vanishes.

On the other hand, the situation is quite different in the calculation for 7®(0). Since it
is a sum of even function of 4; g(b, 7), 21.g(b, 7) is the sum at the solid curves on the left
half plus that at the dotted curves. It is therefore approximated by an integral by «, of g(5,
r) multiplied by a weight function describing the distribution density of nodes. This
approximation creates an error of only higher order. This weight function is approximated
by theW.K.B. factor o(5), which also creates an error of only higher order,

o(5)=(2/m)[(2r +1)— 52]'2, [fp(b)db=r+1/2] (12)

Since all approximations create errors of only higher order, we will obtain an exact result for
the lowest order asymptotic term in J®(0).

Let us try to find out general expressions for higher order derivatives. Differentiating
eq. (2) p times and using eq. (4), we can write the p-th derivative in terms of »(¢)= u?

—(LsLz/ew)]®(0)=2 [~ a(¢*)P+ p(¢*)* V]2
=24 [{bo?()+ v~ V(b)}/ 2{u (0)}’][{8'(0)*/ 227] 13

Let us try to find out some differential equation which p satisfies. Succesive differentiation
of v(¢)=u? yields that v'=2uu’, v'=—2K(t)u’+2u? and v¥=—8K(¢)uw'+4tu?, where
K(t)=(2r+1)—t%. We therefore get a third order differential equation in v,

VO +4K (t)o' —4tv=0, with K(¢)=2r+1)— ¢ (14)
Its p times differentiation yields that

VI HAK (1) 0PV —4(2p+ 1) tP — 4p2 P~V =0 (15)

By induction, it is proved that

v29(b)=[—4K(5)]"'"(b)+H.O.
and
v®7V(b)=4(2¢+1)(g—1)[—4K(5)]7 260" (5)+H.O. (16)

Inserting eq. (16) into eq. (13), using »"(5)=2{#x'(5)}* shown above and also using {¢'(0)}*=
2a%(9r/0a) in eq. (9),

—(LyLz/ew)]*7*0(0) =2162*(2¢+1)[(¢—1)6*— K (b)][—4K (5)]°*(97/da)+H.O0.(17)
On the other hand, J/??(0) is a sum of an odd function ocp[K (5)]?"! which vanishes at p=
(27+1)¥2. Therefore, the lowest order termoc,?~"/2 in the contribution over m<r<m+1,
which yields a termoc H?| vanishes similarly as in 4J“(0).

We can carry out the summation for J?9+9(0) in eq. (17) similarly as for J®(0). Firstly
we multiply o(5), secondly we integrate by g over 0< $<(27+1)"?, next by » over 0< <R,
and finally by k. over | k| <kr. The final result is

2g+1 _( ek} _1)e 2q+1 2q
JEr0)=(SE N (- 1)(2kr) TRy H+H.O. (18)
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The Taylor series with these coefficients is rewritten in the comprehensible form, in terms of
Bessel’s function of order 5/2 denoted by Js.(z) (not the current J(x)), that

__ e 2 2
—](x<0)_647rmc E(2krx (14 f(2kex )]H +H.O. (19)

with
f(z)E%j: (£) " Souttrat, [1+f(z—>—°°)~l”§z‘3cos(z)]

The lowest order term in J(x) is linear to H. It is an oscillating function of x with a
wavelength ~ 7/kr and with a diminishing amplitude ~x~* in the distance. According to it
and to eq. (1) it is estimated that the linear term in J(x) is a good aproximation for a linear
term in J(x, T, p) in the region —(p/kT)kr'<x=0.

4. Discussions

We see from eq. (19) that for any given x, with a sufficiently small H, J(x) becomes
linear to H. However, it doesn’t mean that it is linear everywhere if H is sufficiently small.
It is known that when R increases from N —( to N +0 an enormous diamagnetic current
(de Haas current) appears, which corresponds to the contribution along the horizontal line
—o0< g< — Dy in Fig. 17®. This contribution dJx(x) is easily evaluated since it consists of
merely a chain of complete orbits. We can therefore readily show that it has the factor

f (+: ) tu?dt. Since this factor is just the left hand side of eq. (7), the estimate of its right
a(Dy+x

hand side by W.K.B. gives a rough evaluation that for |x+ Dy | < Rx

dJn(x)=—dkz(e?/ 2n*mc)aNH [1+(x — Dy )*/ RR]'?

and for |x+Dx| >Ry (it includes x~0) dJ/~(x) becomes an exponentially vanishing tail.
Since this tail is negligibly small at x ~0, its Tailor coefficients are negligibly small. Still the
set of these small coefficients keep the complete information of d/nx(x) having a large
amplitude in the distance x ~ — Ry, where it is a singular function of H.

Note that even if a given function is convergent in the distance, each Taylor term is
divergent. Hence, for the function to converge at x = — oo, each Taylor coefficient must not
have even a smallest error. Let us examine the example in /”(0). The contribution to it
over k.- k.+dk, is proportional to a monotonic function of R which we write as G(R):

—d]"(())/dkzocfbdrE G(R). It has a small oscillating component : G(R=N )oc R¥?—(3/

16)R"?, G(R=N +1/4)xR*? and G(R=N +1/2)x<R**+(3/16)R"?>. The main term oc
R*? yields the exact Tailor coefficient for the convergent function. The second term oc +(3/
16)RY? is too small to break the property of monotonic increase in G(R). Still it creates in
1/2J7(0)x? a component which exceeds the convergent function in the distance and strongly
oscillates with H.

We state again that for any given x, J(x) converges to be linear with #-»(0. However,
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with some small value of H fixed, the term H.O. in eq. (19) may exceed the linear term in the
distance. We see from the previous argument that for | x | K Rr, J(x) is linear to H, while
for | x| ~Rr (say x=—B) it isnot. If we set H to be still sufficiently smaller to make J(x)
linear at x=—B, then Rroc H ' becomes still far larger such that R-<B. Thus a linear
theory never gives a correct description of J(x) for | x| ~Rr.

The situation just corresponds to the concept for J(x) to be convergent but not to be
uniformly convergent in mathematics. Since J(x) is convergent at any given x, the formal-
ism of linear response'!'? is formally applicable although we are not sure whether it will give
a description of the essential feature of the system for H—(0. Therefore Ohtaka and
Moriya’s calculation, of which the result is in agreement with the linear term in eq. (19), gave
a correct result for a linear term [1], although in general a linear theory may not always give
a correct answer even to a linear term at an essential singular point [7].

Since it is not uniformly convergent, theformalism of linear response never gives a
correct description of J(x) for | x | ~ Rr, nor of AM which is proportional to the integral of
%J (x) over all x, and their calculation therefore failed for 4M*?.
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