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Abstract

Recently, Knizhnik, Polyakov and Zamolodchikov (KPZ) suggested that 2-D gravity should be
quantized in the light cone gauge as described by the trace anomaly action. The derived equation
determines all critical exponents of matter fields coupled to 2-D quantum gravity which is
described in terms of an SL (2, R) Kac-Moody algebra. In fact, this SL (2, R) Kac-Moody
symmetry which they (KPZ) found allowed us to solve the theory completely, at least in the limit
of “weak gravity”, 1>d, central charge.

1. Introduction

In recent papers, 2-D quantum gravity has been investigated in the light cone gauge by
Polyakov" and his group?. They discussed the quantization of 2-D induced gravity action.
The conformal invariance®* was used to obtain information about the operator products and
consequently about the correlation functions of the theory. They discovered a connection
with SL (2, R) Virasoro-Kac-Moody algebra. The action which they considered arises in
any conformal field theory model coupled to gravity upon integrating out the matter field
vacuum fluctuations. Moreover, the understanding of this system is essential for the quant-
ization of strings in noncritical dimensions. It is also related to the theory of random
surfaces in statistical mechanics.

After their success of the light cone gauge approach, David® and Distler and Kawai®
proposed a derivation of the gravitational anomalous dimensions from the conformal
approach, treating the Liouville exponential interaction as a marginal deformation of the free
action.

In the present paper, 2-D quantum gravity in the light cone gauge will be mainly
reviewed.

2-D gravitational physics” carries historically an interesting structure and has attracted
a growing research. As it is well-known, in two dimensions, the usual Einstein action:

faxv=2R, ()

is a topological invariant and therefore has no dynamical contents. Since the two-dimen-
sional Richi tensor, R,,, is identically equal to 1/2 g, R, the Einstein equation in the vacuum :
Rﬂu_l/z g R—Ngu=0, (2)

has only the non-physical solution g, =0 when the cosmological constant /1 is nonzero. For
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a vanishing /1, g,, is undetermined and the geometry of the two-dimensional space cannot be
described by (2). Jackiw and Teitelboim suggested an analogue of the vacuum Einstein
equations where space-time geometry is dictated by Liouville dynamics in the form:

R—2A=0. (3)

This equation may be obtained from varying the action :
Sir=[d*x/=g (R—2/)N(x), ()

here N (x) is a scalar field as the role of a Lagrange multiplier. From this action we can get
(3) while the variation with respect to the metric g,, yields

(gaerVr_VaVb)N(x)+AgabN(x):O. (5)

Taking the trace of this equation we get the Klein-Gordon equation in de-Sitter space. It
is important to note that (5) does not put any further constrains on the metric. At this stage
the theory described by the action (4) can be quantized in a canonical manner. The
Hamiltonian derived from (4) is a linear combination of the above mentioned constrains (3)
and (5) expressed in terms of the canonical variables.

Recently, in 2-D gravity theory, the induced gravity action was used by Polyakov :

Se= [d*x/g (RO'R+24), 6)

In two dimensions, the usual Einstein gravity does not exist since the Einstein tensor is
identically zero. However, interaction of the metric with the matter fields induces non-
trivial equations of motion for the gravitational field ¢. In this way, using a path-integral
approach, a non-local effective action for g, can be obtained. Only in conformal gauge,
with line element,

ds*=gudx"dx*=e” dx"dx", )

(x*=x"%x"),
it becomes local, producing a Liouville-type dynamics for the field ¢. In the Polyakov path
integral approach to the quantization of strings, the world sheet metric /., is quantized in the
conformal gauge. There the conformal factor of the metric is the only dynamical degree of
freedom and it decouples in the critical dimension. On the other hand, quantizing in sub-
critical dimensions requires the solution of a non-trivial quantum gravity theory on the world
sheet.

2. Light cone gauge

In order to regularize the action we have to introduce a regulator which preserves
general covariance. In the conformal gauge this turns out to be difficult. However, recent-
ly, the effective action has been studied in a different gauge called the light cone gauge. In
this gauge, one makes the theory convergent by adding the covariant regulator M —*
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fdzx‘/—h R? to the action. R here is scalar curvature, and M is a cut-off mass.

The action in (6) is changed into the following form :
S=d/%x- [d*x/=R[RO'R+R*/M*+ Al (8)

Here O is the scalar laplacian constructed from /.. The first term is the effective action
of any two-dimensional coupling to gravity. Here 4 is equal to the central charge of the
Kac-Moody algebra, and 4! will play the role of coupling constant.

In this paper, we use the light cone gauge with the metric:

ds*= hapdx®dx*=dx dx + hiv(x*t, x7)dx dx*,

N :[ 0 1/2} (9)
“11/2 hetl T

If we denote the invariant length by husdx®dx” where @, 3=+, —, by using 2% from (10),
the non-vanishing Christoffel connections are

Fi+:_a-h++, F§+=8+h+++2h++8_h++,

11
I'i-=0-hi+. ( )

Since the regulator term does not affect the analysis in the light cone gauge, now we shall

ACC i 33 i COCs 1T aty=ls 1 15C; IIOW WC Sildall

omit this term from the action (8). In order to find the action and equations of motion in this
gauge, we denote the following relations, (12)-(14), from the general relations at the case of
4 dimensions by using T*"*=47__, and the trace anomaly equation [Appendix A], T3=(d/
247 )R. We obtain®~'?

8S=[T-_8hi /=R d'x. (12)

The curvature scalar is evaluated to be
R=40%h... (13)
We obtain the covariant derivative of the induced energy momentum tensor :
ViT--=0+T-——h+0-T-———(0-h++)T--=d/ 241+ 9-R. (14)

To evaluate a gravitational analogue of Wess-Zumino-Novikov-Witten action
(WZNW), we first determine O~ 'R in the light cone gauge. To start with, we need to
evaluate the action of the laplacian:

D:haﬂvavﬁ:4(a—)'(a+_h++a~). (15)
The action of 0! on the scalar curvature is given by
D:D*1R=(8+—h++3_)"87h++. (16)

Moreover, k., must be replaced by a scalar field f(x*, x~) related to /.. through the
equation :
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6+f(x*, x*)~h++a;f(x+, Xi)ZO. (17)
In stead of S[h..], here we obtain S[f]:
SUI=dfotn- farn{ SRS (ELNLS (18)

The equations of motion which satisfy (18) can be obtained from the anomaly relation, (13)
and (14). We can easily denote straight

ViT-—=—c/24r-0-R=—c¢/24n-3*h+s, (c=26—d). (19)
When the theory is quantized in this gauge, the effect of replacing /., by results in determi-
nants changed —d to ¢=26—d. The result of (19) shows that the equation of motion for
h.y is simply
8§h++ :0. (20)

Actually by using (16) and 7°%*'*® we can also get (20), [Appendix B].

3. Ward identities

The equation of motion, (20), is the starting point for the derivation of Ward identities
associated with the residual gauge transformations leaving the form of the metric in (9)
invariant. The Ward identities define correlation functions in the theory. For this purpose,
we denote gauge variation of /... €, is a parameter for diffeomorphism transformation :

Sf=e.0-f(=e(d/ox™)f(xt, x7)),

0hii=Vi€:=(0+—hsr0-+0-hss). @l
As the result, we find Ward identities by using (19):
c/24im-0*<hii(2)hss(x1) .. hes(xn )
= 2 08— xRl @hen) oo B2 o o) -

+§1 [8(2—u5 )00 Gy — -3z — %) Khes (1) oon Foss LI

Moreover, the Word identities are then integrated to yield the recursive correlation functions
of an arbitrary number of /... By means of the convenient rescaling /..~ (c¢/6)k.+ and the
following relation :

1/ 4in-33{(z27)?/z*}=8%(2). (23)
We obtain the correlation functions in the theory :

a2 hee(x1) oo By (xw )
:—C/G'?{(Z__x;)z/(z+_x;)2}<h++(x1) h++(x;‘) h++(xN)> (24)

+%7 [{(z7=x7)/ (2" —x)))8/oxi ) +2(z~—x5)/ (2T =2 )< ha s (x) ... Bai(xn .

Furthermore, we also can give relations for the arbitrary primary fields, ¢, with transforma-
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tion laws under the change of x~ coordinate :
Sp=€+0-¢+A(0-€:+)¢. (25)
Now we have

herl2)B(m) .. pla) =5 E=E 0

+aad o ]<¢(x1) B, (26)

where A is the parameter related to SL(2, R) spin.

4. Emergence of SL(2, R) symmetry

Parametrizing the most general solution of (20) as
hoo(x®t, x7)=T (x") =272 D)™+ T (2" )N x7 ), (27)
where J%(x*) (a=0, +, —) are the currents of an SL(2, R) current algebra, Kac-Moody
algebra. Here we use the following generators of SL(2, R), L% (a=0, +, —) defined by

Li=(x5)0-+2Ax7,
Li=x70-+2,

Li=o. (28)
(9-=23/ax;),
satisfy an SL(2, R) Lie algebra:
L%, Lil=—f75L5,
L5, Lil=—7. (20)

fi =2, fAf=—1, 2 =+1.
The operator product expansion of two currents 'V is given by
Jxt) o (xt)=—K/ 2 [nas/ (xT—x"P 1+ FE LT (") (x* =2 D))+ ..., (30)

where 7., is the Killing metric tensor for SL(2, R) (700=—1, 7-+=7+-=1/2) and f&® are the
structure constants. By substituting (27) into (26) we fied

JUz)p(x1) ... ¢(xN)>=%fL?/(z—xf)-<¢(x1) R C7 )3 (31)

Using the Sugawara construction'? [Appendix C] :
TEVY =1/ (K +2) 9as] T °+ 0+, (32)

where K is the central charge of the SL(2, R) current algebra, we find the following
differential equation of the correlation function involving primary fields ¢ :

—(K+2)ZJ} ai<¢(X1) ¢(XN)>:J§k ”abL?LZ/ (xf—xi)‘(qﬁ(xl) ¢(XN)> (33)

L¢ are the differential operators representing the action of the current J%(x}) on the space
of primary fields.




386 Research Reports of Kanagawa B-16 (1992)

5. Total energy-momentum tensor

We resolve some difficulties with renormalization and find explicit formula for the
spectrum of anomalous dimensions caused by the fluctuations of intrinsic geometry of
random surface. We assume the few families of Majorana fermions interacting with the 2-
D gravity. We generally use the following Lagrangian :

L:’Iff(8+—h++87)1lﬁ+ qf+(3_—h--8+)’1r+. (34)

In order to treat the gravitational field, we fix /__=0, and integrate over fermions and
a gravitational analogue of WZNW action, S(%,,). A remarkable property of this action
was previously SL(2, R) current algebra, generated by /.., which supplies differential
equations defining correlation functions of theory. These differential equations involve
constant parameters which are subjected to finite renormalization. We solve the problem of
computing this effect. By adding the covariant regulator to the action we make the theory
convergent :

Seex= [[(R/M*W =R d*x =AM~ [(3*he /=R d*x. (35)

This term modifies the propagator of /-field without touching vertices. Here we consider
the improved Lagrangian including the contributions from ghost fields and gravity system :

L(total)=L(matter)+ L(ghost )+ L(gravity), (36)
L(matter)= IIK(& = h++87)11"7+ W+(3-—h__6+)11f+, (37)
L(ghost):77++V7§7+(‘7+5-+V-5+), (38)

where we introduce the pair of ghost (£,, £ ) and anti-ghost (7., {). The gravity term in
the Lagrangian is certain local functional of (4., h--, h:-) guaranteeing general covarian-
ce. Furthermore, we need change the previous gauge (10) into the following gauge :

ho—=h_(x), hi-=h+-(x), (39)

where h__(x) and h,_(x) are fixed as certain functions.
Here we consider the total action including matter, ghost fields and gravity system :

S(total)= S(matter)+ S(ghost )+ S(gravity), (40)
S(gravity):S(h++, h——, h+—). (41)

The total action is invariant under diffeomorphisms. The gravity action is functional of
(h++, h-—, h._) the same as Lagrangian. Hence the variation of the total action, S tot, and
also any gauge invariant quantity must be independent of /- _(x) and /2, _(x) and we have the
condition :

0Stot/Sh-—(x)|n_—o= Ts+tot=0,
0Stot/0hs—(x)|n o= Ts-tot=0.

These variations are components of the total energy-momentum tensor, 7', tot, and imply
the vanishing of the central charge of the Virasoro algebra generated by 7. tot"?.

(42)
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According to (42), we get the following relation :
S(gravity)~ [d?xlh-Togra(he)+he6(he)), (43)

where T, gra is the energy-momentum tensor of the gravity system. Now, in order to find
T..tot including the matter, ghosts and gravity system, we consider the invariance under
transformations :

0his=2V &y, Ohe =V E +V &, Sh_=2V_E. (44)
We find
T++gra0C1/2'[(67h++)2—2h++83h++]+8+3+h++, Hocafh++. (45)

We get the total energy-momentum tensor by using the condition (42), Lagrangian (37), (38)
and (45):

Ti+tot= T+ matt+ T++gh0+ T+ gra, 0(h++):0, (46)
and so,

Tiimatt=¥.0. 7.,
Tiigho=7n++0+6-+ 0+ &4, (47)
Tiigra=1/(K+2)-na]J°]°+0:+J°,

where K is the central charge of the SL(2, R) current algebra. T..gra is actually derived
straight from Sugawara energy-momentum tensor (C-2) [Appendix C] with use of (45).
T.. tot satisfies a Virasoro algebra.

6. Total central charges

This condition (46) implies a relation for the central charges. Moreover, the total
central charge of the Virasoro algebra generated by 7. tot must vanish for consistency with
use of (43):

Ctot=Cmatt+ Cgho+ Cgra=0,
Cmatt=C(¥)=d,

Cgho=C(n+s, E-)+C(E, £4)=—26—2, (49)
Cgra=3K/(K+2)—6K [Appendix C],
and so,
Ctot=d—28+3K/(K+2)—6K=0. (50)

Note that 1), 2) sometimes use K for the ‘mirror charge’: K-> — K—4. We denote the
‘mirror charge’ by K. We can express it in terms of material central charge :

d—13=—6(K+2)—6/(K+2). (51)

Because of renormalization effects coming from gravitational interactions, the physical value
of K, defined as a central charge of current algebra, is given by (51). Note that the above
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argument in deriving (51) does not depend on the specific form (34) of matter Lagrangian.
The SL(2, R) current symmetry and the equation (51) determining its central charge K stand
for the general case of gravity induced by the massless matter with Virasoro central charge
d.

7. Conclusion

KPZ'? derived the KPZ equation which determines all critical exponents of matter fields
chirally coupled to quantum gravity :

A4—=40)=4(1-4)/(K+2), (52)

where 4 and 4(0) are the conformal dimensions of a primary spinless ¢, field with and
without induced gravity respectively. Moreover, this KPZ equation (52) determines the
SL(2, R) weight A= —/4 of any ¢, interacting with the induced gravity. The quantity of 4
represents the scaling dimension of ¢, in the presence of gravity.

According to the relations (51) and (52), we can compute critical exponents for massless
field theory interacting with the induced gravity in the “weak gravity” regime 4d<1 or d =
25. In this region, the quadratic equation (51) possesses real solutions for K. We obtain the
solution :

K+3=1/12{d—1—[(1—d)(25—d)]"*}. (53)

Generally we can examine the quantum gravity induced by any “minimal” conformal field
theory with Virasoro central charge 4 <1 and the dimensions 4(0) given by Kac spectrum?®.
The KPZ equation (52) shows in this case that the “gravitational dressing” converts the
degenerate Virasoro dimensions 4(0) nm into the values :

dnm=—(1+K)/2+[(K+2)n/2—m/ 2], (54)

which correspond to the degenerate representation of SL(2, R) Kac-Moody algebra.

Nevertheless, at the most physically interesting region 4>1, the complex values are
given for the central charge K and exponents. The “strong gravity” at the region 4 >1 is
an unsolved problem.

Recently it has been also investigated that minimal models coupled to 2-D gravity have
special type of resonant correlations defined by the free field representations and are
computable!®. Moreover, in order to treat the problem of the breakdown of Polyakov’s
chiral light cone gauge in the strong coupling regime, 1< 4 matter< 25, it is also argued that
the appearance of spiky structures is shown to be related to the anticonformal limit of
quasiconformal mappings, the so called Beltrami parametrization'”.

Appendix A

In the formalism by using a semiclassical approach to gravity, the gravitational field is
treated as a classical background on which the various matter quantum fields propagate ;
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moreover, we assume that the expectation value in a suitable chosen state of the matter
energy-momentum tensor operator, { T,.>, acts as a source for the evolution of the back-
ground space-time. Here we consider the semiclassical Einstein equations (units are such
that, G=c=#=1):

ny+gﬂu:87[<T,uu>, (A‘l)

where G, is the Einstein tensor. In two-dimensions, G, =0, as already observed, while
{Tw>, generally a non-local geometrical object, can be explicitly obtained by using the
following properties, < 7, is covariantly conserved :

AVAL4 T;w)zo, (A_Z)

and has trace given by the trace anomaly® :

___a -
KTiH= 247 R, (A-3)

where R is the scalar curvature and “g” is a constant determined by the number and species
of fields entering the theory.

Appendix B

The problem'® of finding (16) reduces to finding a function D such that
(3+—h++8,)=8_h++. (Bgl)

To find a solution of this non-trivial equation, we first use an auxiliary field f(x*, x~)in (17)
that satisfies a homogeneous form of (B-1). The induced energy momentum tensor is given
by the functional derivative :

T(x)=—2/V—h-(85/5has(x)). (B-2)
Standard but lengthy manipulations give
T*=—d/48x-[2V*V*D—-V*DV*D— h**(2R—1/2v,DV’D—1/2A)], (B-3)

where our conventions are R’,s=0.0"8,+ 1313, —(a=B), R=h""R%s, D=0"'R.
By using (16), (B-1) and (B-3) we can immediately find

T--=—d/487-[20°D—(3-D ), (B-4)

and since T*"'=47T__ is the variation with respect to the dynamical variable #.., setting it
to zero will give the operator equation of motion :

202D=(0-D ). (B-5)
Differentiating (B-5) with respect to §, and using the definition of (B-1) for D, we get
2hi=0 (B-6)

This equation is the same as (20) obtained previously.
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Appendix C

Now we determine the central charge of the 7, gra. We can decompose #,, according
to the J%(x*) generating SL(2, R) current algebra:

hee=J"=2]°%"+] (x7)% (C-1)
With the use of the Sugawara energy-momentum tensor '* and /.. (C-1), we obtain
T:(sug)=1/(K+2) 72 °J* =1/ (K+2)-{1/ 2:[(8-h++ ) —2h++0%h:1])}. (C-2)
We find T.. gra, the Sugawara construction (32), in terms of current, by using (45) and (46) :

T++gra:1/(K+2)°77ab]“]”+8+]°. (C_B)
The central charge, Cgra, for this energy-momentum tensor is obtained'" :
Cgra=Kdimg/ (K+Cg)—6K =3K/(K+2)—6K. (C-4)

Here dim g=¢§%¢ is the dimension of the group G. Cg is defined as f*°°f*¢= Cgé *°, where
f9%¢ are the structure constants of Lie algebra of the group G.
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