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Abstract

In the lattice approach of two-dimensional quantum gravity, in order to obtain the partition
function all possible dynamical triangulated surfaces are summed up where each triangle is a
regular triangle with the same size. We propose a method to define the complex structure and
separate the conformal mode on two-dimensional dynamically triangulated surfaces. The com-
plex structure is well-defined at ¢<1. We find that the resistivity works well as an order parmeter
for the transition expected in analytic theory.

1. Introduction

The standard model has obtained excellent agreements with many experiments.
Moreover the interactions at GUT’s scale (m¢yr) seem to be unified and in the resion, mcyr
to Mmpncy (Planck scale), we segard the theory as the unification including the quantum
gravity. the string theory, which naturally contains gravity, the gauge theory, matter fields,
SUSY and etc, is the most natural candidate of the quantum gravity. Nevertheless, accord-
ing to the theory, we cannot help having too many perturbative vacua. Therefore, the non-
perturbative treatment is needed in the string theory.

On the other hand recently there has been remarkable propress in the two-dimensional
(2D) quantum gravity. The two analytic approaches have been estabished. The continuous
approach is the Liouville field theory [1] [2]. The discretized approach is the matrix model
[3]. We find the evidence for the equivalence of the two approaches. Moreover in general
we consider that the 2D quantum gravity is equivalent to the non-critical string theory.

In the lattice formulation of the 2D quantum gravity, a discretized, numerical procedure
has been constructed by using the dynamical triangulation (DT) method, in which calculations
of the partition function are performed by replacing the path integral over the metric to a
sum over possible triangulations. The studies of 2D surfaces are currently drawing much
attention in variousfields of science such as physics, chemistry and biology. In physics, for
example, statistical properties of triangulated surfaces [4] are under intensive investigation
in the context of the 2D quantum gravity. The Monte Carlo simulations by the DT method
reproduce surprisingly well fractal nature of the surface as predicted by the Liouville field
theory [1][2] and the non-critical string field theory [5] [6].

In the DT method dual graphs of surfaces have direct correspondence to Feynman
diagrams of ¢° matrix model. The relation between the DT and the matrix model is evident.
In case of the Liouville field theory it is expected that the the manifold in the continuous
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theory should be approximated by the DT method in the continum limit. In the present
work, we review the recent topic of the fundamental relation between the DT method and
critical strings. Defining the complex structure of a surface generated by the DT method
and separating the conformal mode, we research the way to formulate the string analogue
model (fishnet) non-perturbatively. We derive dual amplitudes from planar Feynman dia-
grams in the large order limit by the procedure of the electrical circuit analogy. The
network to corresponding to a fine planar Feynman diagram can be regarded as a uniform
homogeneous conducting sheet with a constant resistivity [7].

The organization of this paper is as follows. In the following section 2, we dedicate a
brief review of the main results from the 2D lattice quantum gravity by the dynamical
triangulation method. In section 3, we here discuss a method to define the complex structure
and separate the conformal mode for a surface constructed by the 2D dynamical triangula-
tion. We consider the way to formulate critical strings non-perturbatively.

2. Dynamical Triangulation Method

The 2D quantum gravity gives both the simplest model of Einstein gravity and a general
framework for researching the universal properties of 2D surfaces. The DT method [4][8]
is employed for the quantum gravity mainly with 2D simulations. In the DT approach we
replace the path integral over the infinite dimensional space of metrics and some matter fields
by a sum over all possible triangulations of space and matter configuration.

f Dg™DX= 3 (1)

(tri),(m.c.)

where (tri) and (m.c.) are triangulations and matter configurations, respectively. We can
generate all configurations for the 2D or 3D case by the set of some triangle moves. The 4D
version is, however, delicate and unclear in general. A triangle move can be defined in
arbitary dimensions (d=2, 3, 4). In practice we often take a specific set of moves, which is
called the (p, g) moves or the ; move where ; equals to d+1—p. Here ; corresponds to the
simplex dimension. The (p, ¢) moves generally conserve the topology. For instance, both
the (1, 3) and (2, 2) moves conserve the topology, and are known to be ergodic, i.e. any two
graphs of the same topology are connected by a sequence of these two moves. Let us now
regard N;(i=0, 1, 2) as the total number of the ;-simplices forming the surface. Then they
are related by the following relationship,

No— Ni+ No=y, (Euler — Poincare) 2)
3N2:2N1, (3)

where the relation (2) is from the topological relationships and the relation (3) is specific to
tiangulations. In our simulation we discretize a surface of area A by triangulation.

A = (ZZNZ, (4)
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where N, is the total number of 2-simplices and & is the area of elementary triangle. In the
DT method the Einstein-Hilbert action can be replaced as follows,

/ dx/gR=,3 25, (5)
where §; is a deficit angle localized around a hinge 7,
— _1—4f>
8 zﬂ( e, (6)

Here we denote g; and R; as the number of triangles sharing the a hinge ; (the coordination
number) ard the local curvature, respectively. Therefore the following relationship is
shown,

> 20=2 3 RA=2E 3 (6-4), ™

hinge.i

where A; is a area attached to a hinge ¢,
¢ % 3 1 .

As a resuit the local curvature is obtained by

o 27[(6_511)
Rx_ ani . (9)
Let us now consider the case of the micro-canonical simulations. The two arbitary
triangulated surfaces are connected by a (2, 2) move which means ergodic. Some sets of
initial cofigurations are prepared where the topologies are fixed at a shere S? a torus 72 and
a genus=2 surface. We explein the procedure of the canonical DT of a 2D surface as
follows,

- We prepare equilateral 3-simplices (tetrahedrons), and put them together by gluing
triangles face- to-face forming a closed surface with the desired topology.

- For increasing the surface area, we glue more 3-simplices on the triangles of the closed
surface, which corresponds to the barycentric subdvisions, or sometimes is called the
(1, 3) move.

« To change the graphs, we pick up a link ramdomly and make the filipflop move or the
(2, 2) move.

For the Monte Carlo simulation of the pure gravity, we take all graphs generated by
the(2, 2) moves with equal weight as members of ensemble. the surface is expected to show
factal behaviour because there are no dimensional parameters in this simulation of the pure
gravity.




250 Research Reports of Kanagawa B-20 (1996)

3. Complex Structure on DT surfaces

In this section we consider the new analogue model [7] for critical strings. One of the
possible ways to formulate strings non-perturbatively is the string theory described by the
local field. Now the fishnet model is introduced as an anlogue model. This model comes
from attempts to derive dual amplitudes from planar Feynamn diagrans in the large ordar
limit [9]. We make use of the electrical circuit analogy. The basis assumption of the
method is that the network correspondsb to a fine planar Feynman diagram can be regarded
as a uniform homogeneous conducting sheet with a constant resistivity. The basic idea is
that the system looks like a string theory if fine planar Feynman diagrams dominate. In the
continuum limit the fine network corresponding to the world-lines should be approximated to
the surface corresponding to the world-sheet for strings.

First we define a fluctuating metric g, on a 2D continuous surface. The metric can be
decomposed into its complex structure.

Guw=Gu1, 2)e*?, (10)

where r is moduli and ¢(z) is a conformal mode. In the DT method we consider that
dynamical triangulated surfaces corresponds continuous surfaces in the large limit (the
number of triangles). Practically these surfaces are known to be fractal [5]. We give a 2D
conducting medium with conductivity tensor, ¢**. We know that the Joule heat @ is
generated by a potencial distribution 1/ on the surface as follows,

G / d26"3,Va, V. (11)

Now we require
0Q=0, (12)
and the following equation is derived,
J¥=0"0.V, (13)

where this formula shows the equation of continuity. Consequently by identifying 9,V to be
the electric field, the Ohm’s law is obtained as follows,

f=L/ggma.v, (14

wher 7 is the resistivity constant. The above law in 2D is invariant under the local scale
transformations,

Guv— gme Y, (15)

where we have an origin of complex structures defined on the DT surfaces.
Next we consider the complex structure on the 2D curved surfaces through measure-
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ments of the resistivity. The above invariance property is also seen by using the resistance
R of a small rectangular section of conducting sheet with length ¢ and width b,

R=%r, (16)
We find that the resistance R is invariant under the lacal scale transformation. We explain
an algorithm to measure the resistivity » from the current and the voltage distributions.
Four points are given on the surface with the complex coordinate, z=x+7y. The potential
at point with the source of the current 7 placed at z,, and a sink of the current at z,, is
shown as follows,

_i R —Rin
V(Z)— 2 In { 2 — Rout

~+ constant(). 17)

In order to cancel out this constant, we measure the potential drops between z and z as

follows,
V()= Viz)=—4C in [ prin. smds (18)
Z*r{—y |z, 225 zin, Zowel]. (19)
/8

where [z, z2; zin, Zou] is known as the anharmonic ratio, and has SL(2, C) invariance.
Namely, under the projective transformation,

Laz+b o
z cz+d’ad be=1, (20)

the anharmonic ratio is invariant. By appropriately choosing four complex parameters, we
can fix three points as follows,

Zz‘n:(), Lout — OO, 2=1. (21)

Therefore we get the potential drops,
Vi(a) = V(e =—1L in| al, 22)

V)= Viam) ==L in| 1-2], 23)

where the following conditions are satisfied, respectively,

[21, 225 2in, Zow]=2, (24)
(21, zin; 22, Zoue]=1— 2. (25)

All the other possible combinations of the complex coordinate z give the linear combination
of the above relationsphip. If the resistivity » is known, the complex coordinate z is
determined. We regard {z, »} as unknowns. We must add more other point, the fifth point.
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We can measure numerically the reistivity » by getting the three extra equations. Namely
if we have five equations for five unknowns, {z,, z;, }, the resistivity is determined. If the
sheet is made of a uniform homogeneous medium with the constant resistivity, the value of
the resistivity » determined from the V/(z)’s does not depend on the choice of the five
electrodes.

We apply this algorithm to a random surface generated by the DT method. We regard
the dual graphs of the surface consisting of N triangles as a trivalent network. We describe
the numerical justification of the basic assertion as follows,

- We take a random trivalent network from the ¢=0 DT and assume each bond has the
resistance, 1Q, where ¢ is the central charge.

- We take vertices randomly and calculate the V(2)’s.

- We determine the resistivity » from the V(z)’s.

The DT method generates the radom surfaces, where we fix the topology on S* and use a
fixed number of triangles prohibiting the tadpole and selfenergy diagrams. We take a look
the measurement for the pure gravity. As a result of the simulations, the distributions of the
resistivity » for three different lattice sizes gives the distinct peaks at 2.6. The peaks get
narrower as the size grows. We compare the value of the resistivity » 2.6 to J/3 of the flat
network, where we have 6 triangles around each apex. When we get a large number of
triangles, the peak grows infinitely as we expect in the continuum limit of a network of
resister. We also find the tendency in the 1-Ising case (¢=1/2) and the 1-scalar case (c=
1). According to the result by the simulations [7], in the area out of the ¢ =1 barrier, namely
¢ >1, the surfaces are branched polymers and no continuum limit exists.

Recently the simplicial quantum gravity has been proposed as a regularization for the 4D
quantum gravity [10]. The partition function is constructed by performing a weighted num
over all triangulations of 4-sphere. The model is well-defined only if the number of such
triangulated consisting of N simplices is exponentially bounded. Numerical simulations
seem so far to favor such a bound. In addition, recent models for the discrete Euclidian
quantum gravity incorporate a sum over simplicial triangulations. The algorithm for
simulating such models leen described in the arbitrary dimension [11]. Moreover our project
with the theory group of KEK [12] now proposes that the 4D generalized model [13] in the
Liouville Field Theory (DDK) [2] should be simulated by the procedure of the improved DT
method. On the other hand as for the simulations for the string theory, we understand that
the Monte Carlo calculations are carried out for the 2D random surfaces coupled to matter
fields such as 26 scalar fields and 51 Ising spins.
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