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Abstract

Let L be a gap sequence, i.e., a finite subset of the additive semigroup N of non-negative in-
tegers whose complement N\ L in N forms a subsemigroup of N. Then the order of the set L is
called its genus. If twice the smallest positive integer of N\ L is larger than the largest integer of
L, we say that L is primitive. It is known that any gap sequence L of genus < 7 (resp. any prim-
itive gap sequence L of genus 8) is Weierstrass?), i.e., there exists a pointed curve (C, P) such
that N\L is the set L(P) of integers which are pole orders at P of regular functions on C\{P}
where a curve means a complete non-singular irreducible algebraic curve over an algebraically
closed field of characteristic 0. Moreover, we showed that any non-primitive gap sequence of ge-
nus 8 except four sequences is Weierstrass?. In this paper we will show that any primitive gap
sequence of genus 9 except only one sequence is Weierstrass.
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§1. On primitive gap sequences of genus 9.

For a gap sequence L = {lp < lj < -++ < ly_1} of genus g, H(L) denotes the complement N\L of L in N,
which is a subsemigroup of N. Let M(L) be the minimal set of generators for H(L). We set

a(L) = (QO(L)1a1(L)’ e 1a9—l(L))y

where a;(L) = l; —i — 1 for any i = 0,1,---,g — 1. Moreover, we set w(L) = f;ol a;(L),which is called the
weight of L. Now we denote Min{h € H(L)|h > 0} by a(L). Then we have 2 < a(L) < g+ 1. Ifa(L) < 5or
a(L) > g, then L is Weierstrass®*:%)®), Hence we give the following table which shows the gap seqeunces L
of genus 9 with a(L) = 6 or 7 or 8, where P (resp. N) means that L is primitive (resp. non-primitive).

L M(L) a(L) w(L) Property
1 {1,2,3,4,5,9,10,11,17} {6,7,8} (05,3%,8) 17 N
2 {1,2,3,4,5,8,10,11,17} {6,7,9} (0%,2,3%,8) 16 N
(3) {1,2,3,4,5,8,9,11,15} {6,7,10} (05,22,3,6) 13 N
4 {1,2,3,4,5,8,9,10,16} {6,7,11,15} (05,23,7) 13 N
(5) {1,2,3,4,5,8,9,10,15} {6,7,11,16} (0%,23,6) 12 N
(6) {1,2,3,4,5,8,9,10,11}  {6,7,15,16,17} (0%,24) 8 p
(n  {1,2,3,4,5,7,10,11,13} {6,8,9,19} (05,1,3%,4) 11 N
(8 {1,2,3,4,5,7,9,13,15} {6,8,10,11} (0%,1,2,5,6) 14 N
9 {1,2,3,4,5,7,9,11,17}  {6,8,10,13,15}  (0°,1,2,3,8) 14 N
(10) {1,2,3,4,5,7,9,11,15}  {6,8,10,13,17}  (0%,1,2,3,6) 12 N
(11) {1,2,3,4,5,7,9,11,13} {6,8,10,15,17,19} (05,1,2,3,4) 10 N
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L
{1,2,3,4,5,7,9,10,15}
{1,2,3,4,5,7,9,10,13}
{1,2,3,4,5,7,9,10,11}
{1,2,3,4,5,7,8,13,14}
{1,2,3,4,5,7,8,11,17}
{1,2,3,4,5,7,8,11,14}
{1,2,3,4,5,7,8,11,13}
{1,2,3,4,5,7,8,10,16}
{1,2,3,4,5,7,8,10, 14}
{1,2,3,4,5,7,8,10, 13}
{1,2,3,4,5,7,8,10,11}
{1,2,3,4,5,7,8,9,15}
{1,2,3,4,5,7,8,9, 14}
{1,2,3,4,5,7,8,9,13}
{1,2,3,4,5,7,8,9,11}
{1,2,3,4,5,7,8,9,10}

{1,2,3,4,5,6,11,12, 13}

{1,2,3,4,5,6,10,12, 13}

{1,2,3,4,5,6,10,11,13}

{1,2,3,4,5,6,10,11, 12}
{1,2,3,4,5,6,9,12,13}
{1,2,3,4,5,6,9,11,13}
{1,2,3,4,5,6,9,11,12}
{1,2,3,4,5,6,9,10,17}
{1,2,3,4,5,6,9, 10,13}
{1,2,3,4,5,6,9,10,12}
{1,2,3,4,5,6,9,10,11}
{1,2,3,4,5,6,8,13,15}
{1,2,3,4,5,6,8,12,15}
{1,2,3,4,5,6,8,12,13}
{1,2,3,4,5,6,8,11,15}
{1,2,3,4,5,6,8,11,13}
{1,2,3,4,5,6,8,11,12}
{1,2,3,4,5,6,8,10,17}
{1,2,3,4,5,6,8, 10,15}
{1,2,3,4,5,6,8,10,13}
{1,2,3,4,5,6,8,10,12}
{1,2,3,4,5,6,8,10,11}
{1,2,3,4,5,6,8,9,16}
{1,2,3,4,5,6,8,9,15}
{1,2,3,4,5,6,8,9,13}
{1,2,3,4,5,6,8,9,12}
{1,2,3,4,5,6,8,9,11}
{1,2,3,4,5,6,8,9,10}
{1,2,3,4,5,6,7,14,15}
{1,2,3,4,5,6,7,13,15}
{1,2,3,4,5,6,7,13,14}

M(L)
{6,8,11,13}
{6,8,11,15}

{6,8,13,15,17}
{6,9,10,11}
{6,9,10,13, 14}
{6,9,10,13,17}
{6,9,10,14,17}
{6,9,11,13,14}
{6,9,11,13,16}
{6,9,11,14, 16,19}
{6,9,13,16,17}
{6,10,11,13, 14}
{6,10,11,13,15}
{6,10,11, 14, 15, 19}
{6,10,13,14,15,17}
{6,11,13,14,15,16}
{7,8,9,10}
{7,8,9,11}
{7,8,9,12}
{7,8,9,13,19}
{7,8,10,11}
{7,8,10,12}
{7,8,10,13,19}
{7,8,11,12,13}
{7,8,11,12,17}
{7,8,11,13,17}
{7,8,12,13,17,18}
{7,9,10,11,12}
{7,9,10,11,13}
{7,9,10,11,15}
{7,9,10,12,13}
{7,9,10,12, 15}
{7,9,10,13,15}
{7,9,11,12,13, 15}
{7,9,11,12,13,17}
{7,9,11,12, 15,17}
{7,9,11,13,15,17,19}
{7,9,12,183, 15,17}
{7,10,11,12,13, 15}
{7,10,11,12, 13,16}
{7,10,11,12, 15, 16}
{7,10,11,13, 15, 16,19}
{7,10,12, 13,15, 16,18}
{7,11,12,13,15,16,17}
{8,9,10,11,12, 13}
{8,9,10,11,12, 14}
{8,9,10,11,12,15}

a(L)
(0°,1,22,6)
(0%,1,22,4)

(0%,1,2%)
(0%,12,52)
(0%,12,3,8)
(0°,12,3,5)
(0%,12,3,4)
(0%,12,2,7)
(0°,12,2,5)
(0°,12,2,4)
(05’ 127 22)
(0%,13,6)
(0%,13,5)
(0%,13,4)
(0%,13,2)
(0%,1%)
(05,4%)
(0%,3,42)
(0%,32,4)
(08,3%)
(0%,2,42)
(0%,2,3,4)
(0%,2,32)
(08,22, 8)
(08,22, 4)
(0%,22,3)
(0%,23)
(0%,1,5,6)
(0%,1,4,6)
(0%,1,42)
(08,1,3,6)
(08,1,3,4)
(0%,1,32%)
(08,1,2,8)
(0%,1,2,6)
(0%,1,2,4)
(0%,1,2,3)
(0%,1,22%)
(0%,12,7)
(0%,12,6)
(0%,12,4)
(0%,12,3)
(0%,12,2)
(05,13)
(07,62)
(07,5,6)
(07,5%)

w(L) Property
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L M(L) a(L) w(L) Property
(59) {1,2,3,4,5,6,7,12,15} {8,9,10,11,13,14} (07,4,6) 10 P
(60) {1,2,3,4,5,6,7,12,14} {8,9,10,11,13,15} (07,4,5) 9 P
(61) {1,2,3,4,5,6,7,12,13} {8,9,10,11,14,15} (07,42) 8 P
(62) {1,2,3,4,5,6,7,11,15} {8,9,10,12,13,14} (07,3,6) 9 P
(63) {1,2,3,4,5,6,7,11,14} {8,9,10,12,13,15} (07,3,5) 8 p
(64) {1,2,3,4,5,6,7,11,13} {8,9,10,12,14,15} (07,3,4) 7 P
(65) {1,2,3,4,5,6,7,11,12} {8,9,10,13,14,15} (07,3 6 P
(66) {1,2,3,4,5,6,7,10,15} {8,9,11,12,13,14} (07,2,6) 8 P
(67) {1,2,3,4,5,6,7,10,14} {8,9,11,12,13,15} 07,2,5) 7 p
(68) {1,2,3,4,5,6,7,10,13} {8,9,11,12, 14,15} (07,2,4) 6 P
(69) {1,2,3,4,5,6,7,10,12} {8,9,11,13,14,15} (07,2,3) 5 P
(70) {1,2,3,4,5,6,7,10,11}  {8,9,12,13,14,15,19} 07,22) 4 P
(1) {1,2,3,4,5,6,7,9,17}  {8,10,11,12,13,14,15} (07,1,8) 9 N
(72) {1,2,3,4,5,6,7,9,15}  {8,10,11,12,13,14,17}  (07,1,6) 7 P
(73) {1,2,3,4,5,6,7,9,14}  {8,10,11,12,13,15,17}  (07,1,5) 6 P
(74) {1,2,3,4,5,6,7,9,13}  {8,10,11,12,14,15,17} (07,1,4) 5 P
(75) {1,2,3,4,5,6,7,9,12}  {8,10,11,13,14,15,17}  (07,1,3) 4 P
(76) {1,2,3,4,5,6,7,9,11} {8,10,12,13,14,15,17,19} (07,1,2) 3 P
() {1,2,3,4,5,6,7,9,10} {8,11,12,13,14,15,17,18} (0%,1®*) 2 P
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‘We know that any primitive gap sequence of genus g and weight < g—11is Weierstrass”'®). Hence the primitive
gap sequences of the above table except the sequences (28),(29),(30),(31),(32),(33), (41),(56),(57),(58),(59),(60)
and (62) are Weierstrass. Moreover, any primitive gap sequence L of genus g and weight g with a(L) =
(09-2,m,n) is Weierstrass?). Hence the gap sequences (60) and (62) are Weierstrass. Now S.J. Kim® showed
that for any gap sequence L with a(L) = (0977, m") there exists a pointed trigonal curve (C, P) such that
L(P) = L. Therefore the gap sequences (28),(31),(56) and (58) are Weierstrass.

§2. 1-neat gap sequences.

In this section we are devoted to the following gap sequences :

Definitin 2.1 Let L be a gap sequence with M (L) = {a1, a2, a3,a4}. We set
o; = Mm{a € N\{O} l aa; €< A1,y Qi—1,8i41,° ", 04 >}
for all i = 1,2,3,4. Then the gap sequence L is said to be 1-neat if renumbering a;, a3, a3, a4 there exist
non-negative integers a;; (i # j,1 <1 < 4,1 < j < 4) which satisfy the following :

4

4
;0 = Z CY;jdj,OSQ,‘j((Ij, (151S4), Z ;5 = aj (1SJS4)

J=1,j#i i=1,i#j
and
a; —0j2 —Q13
det —021 Q3 —Q23 = Q4.
—Q31 —Q3z2 Qg
Then the following holds®.

Remark 2.2 Any 1-neat gap sequence is Weierstrass.
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In the remainder of this section we shall show that the gap sequences (29),(30) and (33) in the table of §1

are l-neat.
Proposition 2.3 The gap sequence (29) in the table of §1 is 1-neat, hence it is Weierstrass.

Proof. Let L = {1,2,3,4,5,6,10,12,13}. Then M(L) = {7,8,9,11}. Weset a; = 7, a; = 8, a3 = 9 and

a4 = 11. Then we have the following relations :
4a) =az+az+ a4, 202 =0a;+a3, 2a3=a;+as4 and 2a4 =2a;+ ag,

which imply that a; =4, as = 2, a3 = 2 and a4 = 2. Since we have

4 -1 -1
det| =1 2 =1 | =11=aq4,
-1 0 2

the gap sequence L is 1-neat. Q.E.D.
Proposition 2.4 The gap sequence (30) in the table of §1 is 1-neat, hence it is Weierstrass.

Proof. Let L = {1,2,3,4,5,6,10,11,13}. Then M(L) = {7,8,9,12}. We set a; = 7, a2 = 8, a3 = 9 and
a4 = 12. Then we have the following relations :

3a; =az+ay, 202 =a;+a3, 3az3=a;+azx+as and 2a4 =a;+az+as,

which imply that a; =3, as = 2, a3 = 3 and a4 = 2. Since we have

3 0 -1
det | -1 2 -1 | =12=aqy,
-1 -1 3

the gap sequence L is 1-neat. Q.E.D.
Proposition 2.5 The gap sequence (33) in the table of §1 is 1-neat, hence it is Weierstrass.

Proof. Let L = {1,2,3,4,5,6,9,11,13}. Then M(L) = {7,8,10,12}. We set a; = 7, az = 8, a3 = 10 and
a4 = 12. Then we have the following relations :

401 = 2a3 + a4, 3az = 2a; +a3, 2a3 =az+a4 and 2a4 =2a;+ az,

which imply that oy =4, a; = 3, a3 = 2 and a4 = 2. Since we have

4 -2 0
det| -2 3 -1 | =12=aq4,
0 -1 2

the gap sequence L is 1-neat. Q.E.D.

§3. Dimensionally proper gap sequences.

In this section we shall treat the following gap sequences :
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Definitin 3.1 Let L be a gap sequence of genus g. Then we define a locally closed subset of Mg by
CL={(C,P) e My, | L(P) = L},

where M, 1 denotes the moduli space of pointed curves of genus g. Then the weight w(L) of L gives an upper
bound for the codimension of any irreducible component of Cz in Mgy,;. Then L is dimensionally proper if
there exists an irreducible component of Cy, of codimension w(L), i.e., dimension 3g — 2 — w(L).

Using the theory of limit linear series Eisenbud and Harris” showed the following which is useful for inves-
tigating whether a primitive gap sequence is dimensionally proper.

Remark 3.2 Let L be a dimensionally proper gap sequence of genus g — 1 with a(L) = (o, 1,...,0g-2).
Then the gap sequence M with a(M) = (By,f1,...,B,-1) is dimensionally proper if it satisfies one of the
following :

1)fo=0,Bi=ai1(G=1,...,9-1),

2) forsome 0< j<g—1,68=0,8=aj_1+1, Bi=a;—; (i=1,...,9— 1,5 # j).

Proposition 3.3 The gap sequences (41), (57) and (59) in the table of §1 are dimensionally proper, hence
they are Weierstrass.

Proof. Let L, be the gap sequence (41), i.e., a(L;) = (0%,1,42). Since the gap sequence M; of genus 8 with
a(M,) = (0%,4?) is dimensionally proper!V), by Remark 3.2 so is L;. Let Ly be the gap sequence (57), i.e.,
a(Lz) = (07,5,6). Since the gap sequence M, of genus 8 with a(M;) = (0°,52) is dimensionally proper!?,
by Remark 3.2 so is L,. Let L3 be the gap sequence (59), i.e., a(L3) = (07,4,6). Since the gap sequence N3
of genus 7 with a(N3) = (0%,42) is dimensionally proper'®), by Remark 3.2 so is the gap sequence M; with
a(Ms) = (08,4, 5). Hence using Remark 3.2 again the gap sequence L; is dimensionally proper. Q.E.D.

By §1 and Propositions 2.3, 2.4, 2.5, 3.3 we get the follwoing which is the main theorem in this paper.

Theorem 3.4 Any primitive gap sequence of genus 9 ezcept only one gap sequence {1,2,3,4,5,6, 9,12, 13}
is Weierstrass.
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