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Abstract

The variation of the electronic density of states with temperature in antiferromagnetic
semiconductors is investigated theoretically based on the s-f model, taking into account multiple
scattering at the same site. It is suggested that the conduction band in an antiferromagnetic
semiconductor splits into two subbands when spontaneous magnetization arises below the Néel
temperature (7y). Based on the calculated result for the bottom of the conduction band, we
consistently explain not noly the magnetic redshift of the optical absorption edge observed in EuO,
EuS and EuSe, but also the magnetic blue shift in EuTe.

PACS number(s) : 71.70. Gm, 75.50. Pp.

1. Introduction

In the previous paper”, we showed that the anomalous redshift of the optical absorption
edge and the temperature dependence of the electron-spin polarization, which were experi-
mentally observed in EuO and EuS, can be explained consistently by applying the single-site
approximation to the s-f model in a ferromagnetic semiconductor. In this work, extending
the previous method to antiferromagnetic semiconductors, we intend to explain the magnetic
blue shift of the optical absorption edge observed in EuTe.

Compared with that for ferromagnetic semiconductors, the theoretical treatment for
antiferromagnetic semiconductors is rather complicated*~® because the spontaneous magnet-
ization develops in opposite orientations for different sublattices below 7). Here we assume
that magnetic moments (hereafter referred to at f spins) are situated regularly on two
interpenetrating ferromagnetic sublattices, A and B. We take the +z direction as the
orientation of the spontaneous magnetization of the f spin at the sites of the A sublattice, and
we assume that no external field is applied. Thus, when the spontaneous magnetization of
sublattice A is (S2#Yav(=<(S:)av), that of sublattice B is (SE)a(=—<Sdav), Where < day
represents a thermal average.

When a single electron (hereafter referred to as an s electron) is injected into an
otherwise empty conduction band, it moves in the crystal while interacting with f spins
through the s-f exchange interaction. This situation can be described well by the s-f
exchange model.*”. In this model, the total Hamiltonian, H,, consists of H;, H; and Hy,
which represent the translational energy of an s electron, the Heisenberg exchange interac-
tion between # spins, and the s-f exchange interaction between an s electron and f spins,
respectively. The notation used in this work is the same as that used in Ref. 1. However,
H; here represents antiferromagnetic ordering, and thus the lattice index m, » must be
distinguished according to the sublattice species to which the lattice belongs.

When spontaneous magnetization arises, the effective potential to which as s electron is
subjected at each site differs according to the orientation (i.e., t or |) of the electrons spin
and to the sublattice species (i.e., A or B) of the site.

Pioneering work on the density of states in antiferromagnetic semiconductors was
performed using a mean-field approach (“Zener model”) by von der Linden and Nolting?. In
this approach, the effective potentials to which s electrons with up-spin are subjected are
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assumed to be —I<{S,>ay for the A sublattice sites and + 7<{S.>., for the B sublattice sites ;
no spin-flip process is taken into account. The energy of a conduction electron with up-spin
is obtained as

e(k, 1)=cdk)EV e )P+ (I{SDav) (1.1)

The Bloch energies due to electron transfer between similar sublattice sites, e,(£) (=&**(k)
=¢®(k)), and between different sublattice sites, e,(k) (=&*5(k)=¢e"4(k)), are defined respec-
tively, as

ai(k)=e"(k)= JLVMEEGAE,M@““’”‘”’, (1.2)
k) =e(k)="1% 3 eme™ ™", (1.3)

where &, is the nearest-nighbor hopping integral. Equation (1.1) represents splitting of the
Bloch band into two subbands below Ty : the splitting disappears in the paramagnetic region
T >Ty. Each of the energy levels, (&, 1) and e(k, | ), is spin-degenerated at least as long
as no external field is applied. Note that the mean field approach gives an energy of

ek, 1)=elk)+elk) (1.4)
at T > Ty, which is equal to the Bloch energy for IS=0, and
e(k, 1)=el(k)*V|elk)P+(IS) (1.5)

at T=0. Therefore, the mean-field approach predicts a distinct redshift of the lower band
edge upon cooling below 7y. This contradicts the experimental observation that a magnetic
blue shift is observed in antiferromagnetic semiconductors. This discrepancy may arise
because multiple scattering is not taken into account by the mean field approach. The aim
of the present study is to investigate the effect of multiple scattering on the conduction
electrons in an antiferromagnetic semiconductor, by applying the single-site approximation'
to the s-f model.

2. Basic Considerations

We first consider an effective medium described by two complex potentials, ¥, and X,.
Y»(Z.) represents the short-range potential to which as s electron is subjected when the
orientation of its spin is parallel (antiparallel) to the orientation of the spontaneous magnetic
moment at that site. (The mean-field approach corresponds to setting X,=—1{S;>av and X,
=+7{S>a. Thus, an s electron moving in this effective medium is described by the
(unperturbed) reference Hamiltonian K :

K= 2 Emna;’mdnp+ zzgar'rmanp, (2.1)
mnp muy
with

Y, when y=1 and mE€A, or, when =1 and mEB

3, when y= ! and mEA, or, when y= 1 and mEB, (22)

2;={

where m< A(B) means that site » belongs to sublattice A(B). Since K includes no spin-flip
term, the orientation of the spin of an electron moving in the effective medium remains
unchanged. Furthermore, the formula is symmetrical for both t and | spins.
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Next, we set the Bloch electron state with up-spin in the effective medium as
|k, t>=cal| Ak, t>+cs| Bk, 1. (2.3)

Here, | Ak, 1> (| Bk, 1)) is the Bloch state related to the Wannier states on the m site of
the A(B) sublattice, | m 1t ), as

e l ithkem

| Ak, 1>=,/ ngAe | m 1, (2.4)
p— 2 tkem

| Bk, t >_‘/_ngse | m 1), (2.5)

Note that the number of each sublattice is N/2, and so these functions satisfy the following
orthonormalities :

(Ak, 1| Ak, 1>=<Bk, 1| Bk, 1>=1, (2.6)
Ak, t | Bk, t>=<(Bk, t| Ak, t>=0. (2.7)
Next, we consider the solution of the eigenvalue equation

K|k t>=E(k)|k 1. (2.8)

This leads to the simultaneous equations
CA[KAA—E(k)]+CBKAB=0, (29)
CAKBA+CB[KBB_E(k)]:0, (2.10)

with

Kia=<CAk, 1| K| Ak, t>=ei(k)+3), (2.11)
Kss=<Bk, 1| K|Bk, t>=c(k)+32,, (2.12)
Kas=<Ak, 1 | K| Bk, t>=elk), (2.13)
Kpa=<Bk, * |K | Ak, 1 >=exk). (2.14)

By solving the secular equation, we obtain two energy eigenvalues, E,(k) and E.(k).
Since K is not Hermitian, the energy eigenvalues are generally complex and the two
eigenfunctions are not orthogonal. Nevertheless, for further calculation we assume here
that the eigenfunctions corresponding to the two eigenvalues, E,(k) and E,.(k), are ortho-
gonal to each other. This assumption simplifies the calculation considerably. (Note that this
problem does not arise for ferromagnetic semiconductors. Since the two eigenfunctions are
characterized by the spin of the electrons, they are orthogonal to each other. See also later
discussion.)

Now, we consider the f spin located at the 0-site (A sublattice) in the effective medium
described by K. Defining the reference Green’s function P as

Plw)=—1, (2.15).
w—K
the diagnoal matrix elements of P in Wannier representations are calculated as F,(w)=
01 |P|10>and F.(w)=<04 |P| L 0.

In order to determine X, and ¥,, we apply the condition that the average scattering by

a single f spin in the medium is zero, as in Ref. 1. For the elements of the ¢ matrix of the

s-f exchange interactions,

01 |¢t]10day=0, (2.16)
<01 | t | { 0>av=0. (217)
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When the above conditions are applied, only the replacements %, for 3, and X, for X, are
needed. It is easily verified that our treatment corresponds to the coherent potential
approximation (CPA) at 7> Ty®.

In order to calculate the density of states, the semicircular band with a half-bandwidth
of 4 is introduced as an undisterbed density of states (i.e., for IS=0) ;®

o= 2 1—(%)2. (2.18)

For T < Ty, we need the Bloch energies ¢,(k) and ez(%), which are related to the crystal
structure. In this study, we consider the following cases.

(i) sc- structure (von der Linder and Nolting® called it the ABAB-structure) and bcc-
structure. Since the nearest neighbors of each site are located on the other sublattice, &,(%)
is 0. Thus, we simply replace (k) by e. The results for this case are summarized as

follows :
Ey(e) = 2”+2“_W, (2.19)
Edle) = 2”+2“+W, (2.20)
| cale) P= W%F (2.21)

_ Ep—3%[°
| ca(e) P= ?L_—'mj;'f. (2.22)

(ii) fcc-structure (von der Linden and Nolting called it the NSNS-structure). Since the
nearest neighbors for each site consist of equal numbers of sites from both sublattices, we
simply replace e,(k) and e,(k) by &/2. The results for the fcc-structure are summarized as
follows :

=/ E+(Zp— o)
Ep(e): €+2p+2 26 +(2p 2) , (223)
Eo(e) =Erdet Loty et Zm D) (2.24)
% e
| cale) |P= Zt [ AE,—3)—-c P (2.25)

- |2E,— %) ¢
|l P= i To(E =5, —c (2.26)

In both cases, the summation over £ is replaced by the integration with respect to &, using
model state density p(e). Accordingly,

0 2 4 2

Fx(w)=2/:4dep(e) Jw% +2A dep(e)i% (2.27)
0 2 a4 2

F;(a))=2_/_‘4dsp(s) Jw% +2A‘ dep(e)%u% (2.28)

In all of the present numerical calculations, the total density of states should satisfy

[ “Du(w)dw=— % T f “Fu(@)do=10 (2.29)

for both p=1 and |.



Conduction band behaviour in EuTe (Takahashi) 147

3. Results and Discussion

In this work, the f spin is treated as a classical spin (i.e., 1/S—0). Thus, D(w)=D(—w),
and the values of <S;>av/S, calculated using the molecular field theory, are 0.0, 0.39, 0.79 and
1.0 for T=Tw, 0.09 7w, 0.057w and 0, respectively.

Figure 1 shows the result for the sc- (or bcc-) structure with 1S/24=0.1. The product
of the density of states and the half-bandwidth, D(w)4(=D:(w)4d+ D .(w)d), is shown as a
function of the reduced energy, w/d, for various temperatures. At paramagnetic tempera-
tures, 7> Ty, the present result agrees with that obtained using the CPA.* Below 7y the
conduction band splits into two subbands; the low (high)-energy subband corresponds to

coupling of the electron spin parallel (antiparallel) to the orientation of the f spins. At T
=0, Eqgs. (2.16) and (2.17) give X,=—1IS and X,=+1IS, and so we obtain
_ 4| w|{ L+US)}— o’ }%
D(w)4= d | =S (3.1)

for IS< | w| <V 4*+(IS)?, and 0 otherwise. It is verified that the density of states given by
Eq. (3.1) satisfies the condition (2.29), although Eq. (3.1) diverges at w= % IS.

A similar result for the fcc-structure with IS/24=0.1 is shown in Fig. 2. At T=0, we
obtain

1.0t T=2Tw 1.0 i
0.0 N o 0.0
i O L0 20
N 1.0f - 1.0 1
3 3
QR0 — 500 1.0 00 ‘
e e L -
820l T=05Ty l 220 il
3 8
[p] wn
« 1.0F « 10 ]
By 2 0.0
e ¥ e m— 50 2
a8 | T=0 il A
2.0 ] 2.0/ :
1.0- ] 1.0f 1
00 s =10 =05 00 05 10 15 0.075 =10 —05 00 05 10 15
w/4 w/4

Fig.2 The density of states in an fcc antifer-
romagnetic semiconductor with IS/24=0.1
for T>Ty, T=0.9Tw, 0.57y and 0.

Fig.1 The density of states in an sc (bcc) antifer-
romagnetic semiconductor with IS/24=0.1
for T=Ty, T=09T7x, 0.57~ and 0.
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1
p@a={5)[(4) (3 -G (9] 52
for IS< | w| <(4+v 4£+4(IS)?*)/2, and 0 otherwise.

It is worth noting that at 77=0 both X, and X, are real and so K is Hermitian. Thus,
the two energy eigenfunctions are orthogonal to each other.

For 0< T'< Ty, when [S/24=0.1, the discrepancy between the numerically estimated
values for the left-hand side in Eq. (2.29) and 1.0 is within the numerical error range.
However, when the exchange interaction becomes stronger, such as IS/24>0.2, the discrep-
ancy exceeds the numerical error range. This is probably due to the assumption that the
eigenfunctions corresponding to E, and E, are approximately orthogonal to each other.
This is not true for 0< 7< Ty.

In Fig. 3, the energy decrease due to the s-f exchange interaction, dw,, is shown as a
function of IS/24 for T> Ty and T=(0. The energy dercease of the bottom of the band
(from w=—4), dws, is calculated using the CPA® for 7> Ty as

24(eV) for IS =0.35eV

0.0 . 5?0 2|.0 1F5 ll.O : 0;8 : OT.G 0.00
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Fig.3 The (reduced) energy decrease of the bottom of the conduction band, dw,/IS, as a function of
IS/24. The dotted line is for T=o0 and the solid lines are for the sc (bcc) antiferromagnetic
semiconductor at 7=0, and fcc antiferromagnetic semiconductor at 77=0. In each case,
classical spin is assumed for the f spins. The arrows show the magnetic redshift for EuQ, EuS
and EuSe and the blue shift for EuTe.

Table 1

24 (eV) IS/2A Theory (eV) Experiment (eV)

EuO 4.2 0.083 0.24 0.27
EuS 3.0 0.117 0.21 0.18
EuSe 2.5 0.140 0.19 0.13
EuTe 2.2 0.159 -0.067 -0.03

(IS =0.35 eV)
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2~ 4(4) (ool BT -1 w

In an antiferromagnetic semiconductor, the results for 7" < Ty differ according to the crystal
structure. In particular, when 7°=0, for the sc- (bcc-) structure,

) ) s
and for the fcc-structure,
S I IR wm

Using the results in Fig.3, we explain the temperature dependence of the optical
absorption edge observed in Eu-chalcogenides. In a ferromagnetic semiconductor, when the
temperature T decreases from oo to 0, the energy of the bottom of the band shifts from dw,
given by Eq. (3.3) to —IS. This is the magnetic redshift of the optical absorption edge
observed in EuO, EuS and EuSe. On the other hand, the energy of the bottom of the band
in an antiferromagnetic semiconductor at 7=0 is given by Eq. (3.4) or (3.5). Thus, the
optical absorption edge in an antiferromagnetic semiconductor shows a magnetic blue shift,
as observed in EuTe.

In Table 1, we show a comparison of the present theoretical results and the experimental
ata. Using the bandwidth 24 taken from Wachter®'”, we calculate the shift in the energy
of the bottom of the band. The agreement with the experimental results is satisfactory.

We also investigate the quantum effect of the f spin. For a finite value of S, instead of

Eq. (3.3), we use

- M HE BT ) - oo

at 7> Ty". Thus, when S=7/2, the theoretical results for the magnetic redshift are 0.224
eV (Eu0), 0.193 eV (EuS) and 0.175eV (EuSe). Agreement with the experimental data is
reasonable. (Note that when the free-electron band with bandwidth W is used instead of a
semicircular band, IS/24 is replaced by (3/4) (IS/W) in Eq. (3.6)).

cu

4. Concluding remarks

We aim to devise an improved s-f model for antiferromagnetic semiconductors, which
is applicable to wide ranges of IS/24 and temperature.

For this purpose, we first studied the energy eigenvalues and eigen-functions for an s
electron moving in an effective medium described by the complex potentials, 5, and X,.
Next, we calculated the density of states, using 5, and 5, determined under the condition that
the average scattering by a single f spin in the medium is zero, together with the assumption
that the energy eigenfunctions are orthogonal to each other. The multiple scattering at one
site is taken into consideration within the # matrix of the s-f exchange interaction. Thus,
the present treatment agrees with the CPA at 7> 7Ty. Furthermore, assuming a semicircu-
lar model density for IS=0, we present the analytical results at 77=0 for an antiferro-
magnetic semiconductor with sc- (bcc-) and fcc-structures in the classical spin limit. The
variation of the electric density of states with temperature is demonstrated for 1IS/24=0.1.
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The results showed that with decreasing temperature, the single band at 7> 7y splits into
two subbands below 7y, which are characterized by coupling of the electron spin parallel and
antiparallel to the orientation of the f spin.

We also show the energy decreases of the bottom of the band as a function of /S/24 at
T=0 and co, Based on these results, we showed that not only the magnetic redshift of the
optical absorption edge observed in EuO, EuS and EuSe, but also magnetic blue shift in EuTe,
can be explained consistently using the single-site approximation.

However, when 0< T < Ty, our method is not applicable for a strong exchange interac-
1
L2
are orthogonal to each other. Since K is not Hermitian, another improved approach is
necessary, especially for strong exchange interaction. This problem will be treated
elsewher.V

tion such as 0.2. This is probably due to the assumption that the eigenfunctions for K
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