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Primitive numerical semigroups of
cyclic index 0 starting with 11

Jiryo KOMEDA

Department of Liberal Arts

Abstract

Let H be a numerical semigroup, i.e., a subsemigroup of the additive semigroup N of non-
negative integers whose complement N\ H in N is a finite set. In this paper, we define the cyclic
index of H and show that if H is the set of non-gaps at a ramification point of a cyclic covering
of P! of prime degree p, then it is of cyclic index 0. Moreover, we study the converse problem in

the case where H is a primitive numerical semigroup starting with 11.
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§1. Cyclic index.
Let H be a numerical semigroup starting with n > 2. We denote by S(H) the standard basis for H, i.e.,
S(‘H) = {n1311527~ . ysn-l},

where s; = Min{h € H| h = i mod n} for all 1 < i < n— 1. We remark that s; + s,—; = 0 mod n for all
1<i<[n/2]. Set
s = Min{s; + s,—i| i =1,...,[n/2]}.

We define the non-negative integer Cy(H) to be

1 [n/2]
<= Z (8i + sn—i — s),
n i=1

which is called the cyclic index of H.

Example 1.1 Let H be a numerical semigroup starting with 2 or 3. Then it follows immediately that
Cy(H) =0.

Example 1.2 For two integers n and m satisfying 1 < n < m < 3n — 1 let H be a numerical semigroup
with S(H) = {4,5, = 4n+ 1,52 = 8n + 2,53 = 4m + 3}. Then we get 5 = s1 + 53, because 253 — (s1 + s3) =
4(3n —m) > 0. Hence, Cy(H) =3n—m > 0.

Example 1.3 Let H be a numerical semigroup generated by two elements a < b. It is straightforward to
prove that s; + s4_; = ba for all 1 < i < [a/2]. Hence, Cy(H) = 0.

Example 1.4 Let H be a numerical semigroup with

N\H ={1,2,...,9 — 1,9 +1}
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for some 1 <i< g— 1. Then we have Cy(H)=11if i # g/2 and Cy(H) = 2 if i = g/2. In fact,
SH)={n=g,s1=9+1,...,si1=g+i—1l,s5,1=g+i+1,...,: 5g-1 =29 — 1,8, =29 +1}.

Hence, s = 3g. Since s; 4+ s4_; = 4g (resp. 5g) for i # g/2 (resp. i = g/2), we get the desired result.

Example 1.5 Let H be a numerical semigroup with
N\H ={1,2,...,9 —2,9,29 — 1}.
Then
SH)={n=g—-1,sa=g+1,s3=g+2,...,5-2=29 — 3,51 = 3g — 2}

Consequently, s = 3(g — 1). Therefore, we obtain

1
Cy(H) = ng(Sl +i5g-5 = S) =

§2. The cyclic indices of ramification points of cyclic coverings of P! of prime degree p.

In this paper, by a curve we mean a complete non-singular irreducible algebraic curve over an algebraically
closed field k of characteristic 0. Let C' be a curve and P its point. We denote by H(P) the set of integers
which are pole orders at P of regular functions on C'\{P}. Let n be an integer> 2. A numerical semigroup
H starting with n is said to be n-cyclic if there exists a cyclic covering m : C — P! of curves with a total
ramification point P such that H(P) = H, where P! denotes the projective 1-space over k. In this section, we

shall show the following theorem :
Theorem 2.1 Let p be a prime number and H a p-cyclic numerical semigroup. Then Cy(H) = 0.

Proof. Let m : C — P! be a cyclic covering of curves of degree p with a ramification point P such that
H(P) = H. It follows from the proof of Proposition 1 in the paper 1) that

p—1
S(H(P)) = {p,b, Y [_m”] ig—mb(m=1,2,....p— 2)} :
q=1

p
p—1 p—1
where iy,14,...,4,_1 are some non-negative integers with p ,{'Z qig and b = Zqiq. Hence, we get
q=1 q=1
p = [~q
iz B} ={ % [ -]
i [=m nt —(p—m)
U{_pZ[ Q]iq—mb+(—p [u]iq—(p—m)b>|m:2,3,...)[g]}
q=1 p q=1 p

We find that for all 2 < m < [p/2],

_ppz_f [_;”q] iq — mb+ (—pp_l [M] ig— (p— m)b)
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p—1 p—1 p—1 —q
=—pY (-1—qlig—pb=pY ig=-p) [—] iq,
q=1 q=1 9= P

=1
which shows that Cy(H) = 0. Q.E.D.

In order to study the converse of the above theorem in the next section we need the following remark.

Remark 2.2 Let p be a prime number and H a numerical semigroup starting with p. Then the following
conditions are equivalent.

i) H is p-cyclic.

p—1
. lq . . . )
i) S(H) = {p, Z (lq - [—] p) iy (l=1,2,...,p— 1)} for some non-negative integers i1,%3,...,%,_1.

p
g=1

Proof. For all 1 < m < p—1 we have

(p—m)q - [Q—pi)q] p+p [—%] + mgq

o[22 e

Hence, by the proof of Proposition 1 in the paper 1) we get the desired result. Q.E.D.

§3. The converse problem in the case p = 11.

2)3) In

We shall study the converse of Theorem 2.1 with p = 11. In the case p < 11 this statement holds
this section, we shall determine all primitive numerical semigroups of cyclic index 0 starting with 11, where a
numerical semigroup H starting with n is said to be primitive if the largest integer in N\ H is less than 2n.

Moreover, we consider the question whether these semigroups are 11-cyclic.

Lemma 3.1 Let H be a primitive numerical semigroup of cyclic index 0 starting with 11. Then one of the
following holds

1) S(H)=1{11,12,13,...,21}.

i) S(H) ={11,23,24,...,32}.

ili) s = 44, where s is as in §1.

Proof. We follow the notation of §1. Suppose that s > 66. Then there exists some 1 < ¢ < 10 such that
s; > 33. Hence, H # s; — 11 > 22 = 2 x 11, which shows that H is non-primitive. Consequently, we get s = 33
or 44 or 55. Let s = 33. It is straightfoward to show that i) holds. Let s = 55. Suppose that there exists some
i such that s; # 22 + 7. Then we get s; = 11+ ¢ or 33 + 4. If s; = 11 + 4, then s11_; = 44 — ¢, which implies
that the largest integer in N\ H is larger than or equal to 33 — ¢ > 22. This is a contradiction. If s; = 33 + 1,

in a similar way to the above this is impossible. Accordingly, H satisfies ii). Q.E.D.

In the remainder of this section we use not only the notation in §1, but also the following. Let H be a

primitive numerical semigroup of cyclic index 0 starting with 11. We set
t; = Min{s;| i =1,2,...,10}.

For all 1 < i< 10, let t; € S(H) such that t; = it; mod 11. By Remark 2.2, H is 11-cyclic if and only if the

following system (A) of linear equations has a solution (i1, 2, ...,%10) such that 71,142, ..., %10 are non-negative
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integers:

11(iy + 42 + i3 + ia + 15 + 16 + 17 + ig + i9 +110) = 5

i1 + 219 + 3iz + 414 + bis + 61 + Tiz + 81g + i + 10210 = 1
211 + 4ig + 6i3 + 8iq + 1025 + 75 + 317 + Hig + Tig + 9i10 = 12
341 + 61y + 913 + 14 + 4i5 + Tig + 1027 + 2ig + Hig + 8119 = 13
41, + 819 + 13 + Hig + 915 + 216 + 617 + 10ig + 3ig + Tiyo = t4
511 + 1075 + 4is + 914 + 315 + 8is + 2i7 + Tig + 19 + 6110 = 15

(A)

We shall investigate whether H is 11-cyclic, that is, whether the system (A) has a solution consisting of
non-negative integers.

i) S(H) = {11,12,13,...,21}. Then (A) has a solution (1,0,0,0,1,1,0,0,0,0).

i) S(H) ={11,23,24,...,32}. Then (A) also has a solution (1,0,0,0,2,2,0,0,0,0).

iii) Let s = 44. We denote by I(H) the subset of {1,2,3,4,5} such that if i € I(H), then s; = 11 + ¢ and
s11—i = 33 — ¢, and otherwise, s; = 22 + 7 and s;;_; = 22 — i. The cardinality of the set of subsets of the set
{1,2,3,4,5} is 32. By computation we obtain the following table for solutions of the system (A) in each case.

I(H) S(H)\{11} a solution consisting of non-negative integers

(1) 0 (17,18,19,20, 21, 23, 24, 25, 26, 27} (1,0,0,0,2,1,0,0,0,0)
(2) {1} {12,17,18, 19,20, 24, 25, 26,27, 32} (0,2,1,0,1,0,0,0,0,0)
(3) (2} (13,17,18,19,21, 23, 25, 26,27, 31} (1,0,1,1,1,0,0,0,0,0)
(4) (3} (14,17, 18,20, 21, 23, 24, 26, 27, 30} (1,1,0,0,1,1,0,0,0,0)
(5) (4} (15,17,19, 20,21, 23, 24, 25, 27, 29} (1,1,0,0,1,0,1,0,0,0)
(6) (5} {16,18,19,20,21, 23, 24, 25, 26, 28} (0,1,1,0,1,1,0,0,0,0)
(7) (1,2} {12,13,17,18,19,25,26,27,31, 32} (1,2,0,0,0,0,1,0,0,0)
(8) (1,3} {12,14,17, 18,20, 24, 26,27, 30, 32} (1,1,0,1,1,0,0,0,0,0)
9) (1,4} {12,15,17,19,20, 24, 25,27, 29, 32} (0,1,2,1,0,0,0,0,0,0)
(10)  {1,5)  {12,16,18,19,20,24,25,26,28, 32} No

(11)  {2,3}  {13,14,17,18,21,23,26,27,30, 31} (1,1,0,0,2,0,0,0,0,0)
(12)  {2,4)  {13,15,17,19,21,23,25,27,29, 31} (2,0,0,0,1,1,0,0,0,0)
(13)  {2,5)  {13,16,18,19,20,21,23,25, 26,28} (0,1,2,0,1,0,0,0,0,0)
(14)  {3,4)  {14,15,17,20,21,23,24, 27,29, 30} (2,0,0,0,1,0,1,0,0,0)
(15)  {3,5)  {14,16,18,20,21,23,24, 26,28, 30} (0,1,1,1,1,0,0,0,0,0)
(16)  {4,5)  {15,16,19,20,21,23,24, 25,28, 29} (1,0,1,0,1,1,0,0,0,0)
(17)  {1,2,3}  {12,13,14,17,18,26,27,30,31, 32} (2,1,0,0,0,0,0,1,0,0)
(18)  {1,2,4}  {12,13,15,17,19,25,27,29,31,32} (1,1,1,0,0,1,0,0,0,0)
(19) {1,2,5} {12,13,16,18,19, 25, 26, 28, 31, 32} No

(20)  {1,3,4}  {12,14,15,17,20,24,27,29,30, 32} (1,0,1,2,0,0,0,0,0,0)
21)  {1,3,5)  {12,14,16,18,20, 24,26, 28,30, 32} (2,0,0,0,2,0,0,0,0,0)
(22)  {1,4,5)  {12,15,16,19,20,24,25,28,29, 32} (1,0,2,0,1,0,0,0,0,0)
(23)  {2,3,4)  {13,14,15,17,21,23,27,29,30, 31} No

(24)  {2,3,5})  {13,14,16,18,21,23,26,28,30,31} No

(25)  {2,4,5}  {13,15,16,19,21,23,25,28,29,31} (1,1,1,0,0,0,1,0,0,0)
(26) {3,4,5} {14,15,16,20, 21,23, 24, 28,29, 30} (1,0,1,0,2,0,0,0,0,0)
27)  {1,2,3,4} {12,13,14,15,17,27,29,30,31, 32} (2,0,0,1,0,1,0,0,0,0)
(28) {1,2,3,5} {12,13,14,16,18,26,28,30,31, 32} No

(29) {1,2,4,5) {12,13,15,16,19,25,28,29, 31,32} (2,0,1,0,0,0,1,0,0,0)
(30) {1,3,4,5} {12,14,15,16,20,24,28, 29,30, 32} No

(31)  {2,3,4,5} {13,14,15,16,21,23,28,29,30,31} No

(32) {1,2,3,4,5) {12,13,14,15,16,28,29,30,31,32} (3,0,0,0,0,0,0,0,1,0)
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For example, let H be as in the case (10). Then we consider the system (A) of linear equations

(11(iy + iy + i3 + 14 + 15 + 6 + 17 + i + 19 + i10) = 44
i1 + 269 + 343 + 4iy + bis + 6ig + Tiz + 8is + 94g + 10§10 = 12
2%y + 4iy + 6i3 + 8ia + 1085 + i + 3i7 + bis + Tig + %10 = 24
34, + Big + 9z + 44 + 4is + Tis + 10i7 + 2ig + big + 8i10 = 25
4, + 8ig + i3+ Hig + 9is + 2i + 6i7 + 10ig + 31 + Tiyo = 26
| Bi1 + 10i + i3 + 9is + 3i5 + 8is + 27 + Tig + io + 6i10 = 16

If we set i7 = ig = 1g = 1190 = 0, then the above system becomes

4

11(21 + 2 + i3 + t4 + @5 + 16) = 44

i1 + 2 + 3is + dig + Bis + 6ig = 12
91 + iy + 6is + 8is + 10i5 + is = 24
34, + Big + 973 + iq + dig + Tis = 25
4iy + 8iy + 13 + Hig + 915 + 215 = 26
5iy + 10i5 + 4iz + 9ig + 3is + 8ig = 16

Then by calculation this system has a unique solution (1,1,1,—1,2,0). Moreover, it is easy to see that the

system (A) has the solutions
i1 =1+4110,93=141g, 43 =141, ia = —1+ 17,15 = 2 — iy — ig — ig — 410 and g = —i7 — g — I9 — i10
where i7,1s,i9 and 4o are arbitrary. Therefore, the system (A) has no solutions consisting of non-negative
integers.
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