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Abstract

For the s-fmodel in an antiferromagnetic semiconductor, the effect of the antiferromagnetic ordering

of the localized spins on the conduction-electron state is investigated over a wide range of exchange

strengths by combining the effective-medium approach with the Green’s function in 2 x 2 sublattice

Bloch function representation. The band-splitting due to the reduced magnetic Brillouin zone

occurs below the Néel temperature. There is a marked effect of the thermal fluctuation of the

antiferromagnetically ordered localized spins on the conduction electron at the energies near the

top (bottom) of the lower- (higher-) energy subband.
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approximation (CPA)

1 Introduction

In the present contribution we study how the
conduction-electron state in an antiferromagnetic semi-
conductor varies with the temperature and/or with the
antiferromagnetic ordering of the localized-spin system
through the exchange interaction between the electron
and the localized spins. In the previous paper (hereafter
referred to as Ref. 1), one of the present authors (M.
T.) studied the electron state by applying the effective-
medium approach [2] for the s-f model (3, 4, 5] in an
antiferromagnetic semiconductor [6]. Assuming the or-
thogonality of two eigenfunctions which were obtained
for an electron moving in the effective medium, he cal-
culated the density of states in an antiferromagnetic
semiconductor with a weak exchange interaction. The
method, however, cannot be applied to the case of a
strong exchange interaction at finite temperatures. In

particular, the above mentioned assumption of the or-

thogonality has to be considered with caution. The
other author (W. N.) and coworkers (7, 8, 9] indepen-
dently calculated the temperature-dependent quasipar-
ticle spectrum of a single conduction electron exchange
coupled to an antiferromagnetically ordered localized-
spin system using a momentum-conservation Green
function technique. In the self-energy approach treat-
ment, they correctly derived the Green function in the

2 x 2 sublattice Bloch function representation.

In this study, we aim to devise an improved theory
for the s-f model in antiferromagnetic semiconductors
that is applicable not only for weak interaction but also
for strong interaction, as well as to a wide range of tem-
peratures. For this purpose, we combine the two meth-
ods which were independently developed by the present
authors. Using the Green function in the 2x2 sublattice
Bloch function representation (7, 8, 9], we improve the
effective-medium approach for the s-f model [1, 2] in

order to study the conduction-electron states in anti-
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ferromagnetic semiconductors. As shown in this paper,
the present method considerably extends the applicable
range of temperatures and exchange strengths. A brief
report has been already presented previously [10].

The organization of this paper is as follows. In Sec.
11, the improved effective-medium approach for the s-f
model in an antiferromagnetic semiconductor is con-
cisely formulated, avoiding duplicity with Ref. 1. In
Sec. III, the numerical results are presented for three
cases: two different types with classical localized spins
and one with quantum spins. The two types are clas-
sified according to the distribution of electron transfer
energy to the transfer between similar and/or different
sublattice sites. For each case, the results of the density
of states, the coherent potential (or self-energy), and
the quasiparticle energy, are shown for typical exchange
strengths and various temperatures, together with dis-
cussion regarding the effect of antiferromagnetic order-
ing of the localized spins on the conduction-electron
state through the exchange interaction. In Sec. IV, con-

cluding remarks are presented.

2 Basic Considerations

Since the situation and notation examined here are
the same as those in Ref. 1, we give here a brief sum-
mary of the effective-medium approach for the s-fmodel
in an antiferromagnetic semiconductor. The currently
accepted s-f model (2, 3, 4, 5] is used for describing the
conduction (s ) electron interacting with the localized
(f) spins at each lattice site through the s-f exchange
interaction. In this model, the total Hamiltonian, H,,
consists of Hy, Hy, and H,y, which represent the trans-
lational energy of an s electron, the Heisenberg-type ex-
change interaction between fspins, and the s-fexchange
interaction between an s electron and f spins, respec-
tively. In this work, H; represents antiferromagnetic
ordering between f spins.

In the case of an antiferromagnetic semiconductor
(6], spontaneous magnetization develops in opposite ori-
entations for different sublattices below the Néel tem-
perature (Tv). Here we assume that f spins are sit-
uated regularly on two interpenetrating ferromagnetic
sublattices, A and B. We take the +2z direction as the
orientation of spontaneous magnetization of the f spin

at the A sublattice sites and we assume that no external

field is applied. Thus, when the spontaneous magneti-
zation of sublattice A is < SA >,, (=< S, >..), that
of sublattice Bis < SZ >,, (= — < S, >av), where
< >ay represents a thermal average. When a single
(s-) electron is injected into an otherwise empty con-
duction band, therefore, it moves in the crystal while
being affected by the antiferromagnetically ordered f
spins which are thermally fluctuating at T' < T .

In the effective-medium approach [1], complex po-
tentials, ¥, and Z,, are prepared in order to consider
the effect of the fluctuation of antiferromagnetically or-
dered fspins on the s electron state; £, (3,) is a short-
range potential to which an s electron is subjected when
the orientation of its spin is parallel (antiparallel) to the
orientation of the fspin at that site in spontaneous mag-
netic ordering. Thus, the effective Hamiltonian for the

s electron moving in the effective-medium is described
by

K = Z smna:rnuan# +ZZ(m,u)aIn“am,“

m,n,pn m,

(2. 1)

where L(m, u) = £, for u =1 (|) and £(m, u) = &, for
p =] (T) when m belongs to sublattice A(B). In other
words, ¥, (3,) stands for the majority- (minority-) spin
electron; a majority-spin electron in the A sublattice
becomes a minority-spin electron in the B sublattice
and vice versa. It should be noted that the orienta-
tion of the spin of an electron moving in the effective
medium remains unchanged because K includes a spin
conserving term. Furthermore, the formula is symmet-
ric for both T and | spins as long as no magnetic field is
applied. In the Bloch representation, K is represented
by the 2 x 2 matrix [1]:

K = < Ak,T |K|Ak,1> < Ak,T|K|Bk,1>
< Bk,1|K|Ak,1> < Bk,1|K|Bk,1> |’

_ e1(k) + Iy e2(k)
€1 (k) + Za

e2(k)
In Eq. (2. 2), |Ak,T> (|Bk,1>) are the Bloch states
related to the Wannier states on the A(B) sublattice
sites; Furthermore, &;(k)[= e44(k) = PBB(k)] and
e2(k)[= e*B(k) = £BA(k)] are the Bloch energies due

to electron transfer between similar sublattice sites and

(2. 2)

between different sublattice sites, respectively.
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Figure 1: Density of states in an S(B)-type antiferromagnetic semiconductor with classical spins for T' > Ty and
T = 0.9Tn,0.5TN, and 0; (a) IS/2A = 0.1, (b) I1S/2A = 0.2, and (c) 15/2A = 0.3. The solid line represents

D(w)A, the dotted line represents D,(w)A.

The matrix element of the reference propagator
(w— K)™! is given by [7]

1 _ -1_ w~€1(k‘) —Za Ez(k)
w-K ~ D gk)  w-ak) -5,
; (2. 3)
where
D = [w—(aa(k) + Za)llw — (e1(k) + Tp)] — ea(k)? ,
= (w— Ep)(w- Ea) , (2. 4)
with
2e1(k) + Zp + Ta — /4e2(k)2 + (Ep — Xa)?
E, = 2 )
(2. 5)
# - 2e1(k) + Bp + T + 1/4e2(k)2 + (Z, — Z,)2
a - 2 .
(2. 6)

Note that E, and E, are generally complex, and are
equal to the energy eigenvalues of K. The eigen states
corresponding to two complex eigenvalues, E, and Ej,
are hereafter called P-state and A-state, respectively;
P(A)-state is mainly composed of Wannier states in
which the orientation of the s electron spin is paral-
lel (antiparallel) to the orientation of the fspin at each

site.

In the effective-medium approach approximation
(1], K should be determined so that (w — K)~! is ap-
proximated to the thermal average of the propagator,
< (w— H)™! >,,, where H = H, + Hgy. Within the
single-site approximation, this leads to the condition
that ¥, and X, are so self-consistently determined that
the average scattering of the s electron by a f spin lo-
cated in the effective medium described by £, and X,
is zero [2]. For the application of the single-site ap-
proximation using the ¢ matrix formula, the diagonal
matrix elements of (w — K)~! in the Wannier repre-
sentation, or Fj(w) =< Am 1 |(w — K) " }Am 1>=<
Bm | |(w—- K)™}Bm |> and F|(w) =< Am |
(w - K)™YAm |>=< Bm 1 |(w - K)™!|Bm 1>
(independent of site index m), are necessary. In the
previous work [1], the energy eigenvalues of E, and E,
and two eigenfunctions were first calculated by solving
the secular equation for K. Then, assuming the or-
thogonalization of the two eigenfunctions, Fy(w) and
F|(w) were evaluated. The previous method, however,
yielded nonphysical results for the cases of strong ex-
change interaction as |%| > 0.2 at antiferromagnetic
temperatures (Ty > T > 0). The cause of the failure

is ascribed to the assumption of orthogonality of the
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Figure 2: (a) ReZ,/A (upper part) and ReX,/A (lower part), (b) Im¥,/A, and (c) ImE,/A in an S(B)-type

antiferromagnetic semiconductor with classical spins with 5/2A = 0.3 as a function of w/A for various tempera-

tures: dashed line represents T = 0; solid line for T' = 0.5T}v; dash-dotted line répresents T = 0.9Tn; dotted line

represents T > Ty (or Zcpa = Zp = Ta).

two eigenfunctions, which is incorrect when K is not
Hermitian (or when Ty > T > 0).

In the present work, without assuming the orthogo-
nality of the two eigenfunctions, we calculate Ft(w) and
F(w) directly using the matrix element of (w — K)™*
shown in Eq. (2. 3). Consequently

2 w—€1(k)—za
Frlw) = — , 2.7
2 nA nB >
= === -+ 5 (2 8)
and
2 nB NA
Filv) = —Nz(w_E +w_E>  (2.9)
Ak P a
with
61(k)+2 -—Ep
= SIS TIBC %
A Ea_Ep ) ( 10)
6l(k)+za_E|a
= . .11
nB E,— E, (2. 11)

Next, we introduce the semicircular band with a half

bandwidth of A,

2 £\2
ple) = —y 1—- (Z) : (2. 12)
as an undisturbed (model) density of states (i.e., for
IS = 0) [1]; In order to replace the summation over
k within the Brillouin zone by the integral of € using
p(g), we need to determine the relationship between &
and the Bloch energy [or £1(k) and e2(k)]. It is diffi-
cult to specify a simple relationship because the Bloch
energy is strongly related to the crystal structure (or
tight-binding system). Note that the model density of
states given by Eq. (2. 12) is not related to a specific
tight-binding system. In this work, we proceed to per-
form calculation for two cases which are assumed as fol-
lows. (i) S(B)-type: when the nearest neighbors of each
atom are from the other sublattice, we set e1(k) — 0
and g,(k) — €. (ii) F-type: when the electron transfer
between similar sublattice sites €1(k) contributes to ¢

as much as that between different sublattice sites £2(k),
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we set €1(k) — €/2 and e2(k) — €/2. (In Ref. 1, the avoid misunderstanding.)

above types were referred to as the sc (bce) structure

and fcc structure, but in this paper this is changed to Furthermore, we calculate F3}(w) and F)|(w) by
_ 77A
Filw) = / 2 / deple) s = (2. 13)
_nB NA
Flw) = / +2/ dep(e) —=——— 2. 14
1 (w) SB[ i ( DB (2. 14)
(see also the discussion regarding Fig. 3). Note that 74 +np = 1. When we define Fj,(w) and F,(w) by
2 1 . 1
Flw) = = = 2/ dep(e) ————, 2. 15)
* N%;w—Ep _A ( w— Ey(e) (
2 1 8 1
= =2 ——— 2 1
Fa(w) N ; w— Ea, A dsp(g)w _ EG(E) ) ( 6)

then F(w) = Fy(w) + Fi(w) = Fp(w) + Fa(w). As to P(A)-states. The P(A)-state is mainly composed of
can easily be seen by the definition, F} is related to the Wannier states in which the orientation of the spin is
majority-spin () electron states in the A sublattice, parallel (antiparallel) to the orientation of the f spin
whereas F)| is related to the minority-spin (|) electron at each site. The total density of states is estimated
states in the A sublattice. In contrast, F}, (Fy) is related by D(w) = —1ImF(w), while the density of states for
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Figure 4: Same as Fig. 1, but for an F-type antiferromagnetic semiconductor with classical spins.

the P(A)-state is estimated by Dp(w) = —1ImF,(w)
(Da(w) = —LImF, (w)).

In the above expressions, the difference between the
present approach and the previous one (Ref. 1) is that
we replace |c4|? and |cp|? [which are defined by Egs.
(2.21) and (2.22) in Ref. 1] by n4 and 7np, which are
defined by Egs. (2. 10), and (2. 11), respectively. It
should be reemphasized that in this work we do not
adopt the assumption of the orthogonalization between
the two eigenfunctions which belong to different com-
plex eigenvalues, E, and E,. This assumption was
the cause of the unreasonable results obtained for the
strong exchange interaction in the temperature region
of 0 < T < Ty in the previous work. In the next
section, we demonstrate how the present approach im-

proves these unreasonable previous results.

3 Results and Discussion

3.1 S(B)-type antiferromagnetic semi-

conductors with classical spins

In this subsection, we present the results for S(B)-
type antiferromagnetic semiconductors with classical
In the effective medium of the S(B)-type,

a majority- (minority-) spin electron changes to a

spins.

minority- (majority-) spin electron when the electron

transfers from a site to another site, because the near-
est neighbors of each atom are from the other sublat-
tice. In the classical spin treatment, the operation of
1/S — 0 is taken while keeping IS = constant. The
values of < S, >, /S, calculated by applying the
molecular field approximation for classical spin, are 0.0,
0.39, 0.79, and 1.0 for T' > Tn, T = 0.9Tn,0.5Tn, and
0, respectively. Figure 1 presents the variation of the
product of the density of states and the half-bandwidth
D(w)A with temperature as a function of the reduced
energy w/A for typical exchange strength cases: (a)
weak interaction (I.5/2A = 0.1), (b) intermediate in-
teraction (IS/2A = 0.2), and (c) strong interaction
(IS/2A = 0.3). The method reproduces the previous
result [1] for both cases of T > Ty and T = 0; The
result for paramagnetic temperatures (I" > Ty ) agrees
with that obtained using the coherent potential approx-
imation (CPA) [11], while the result for the density of
states for T' = 0 is given by

Dw)A =

dlo| [A24(18)2 —w? V2 1)
JAN w? —(15)2 T

for IS < |w| < /AZ+(IS)? and O otherwise [1].
Although Eq. (3. 1) diverges at w = =I5, the to-
tal number of states is preserved. The present study
reveals how the conduction-electron states in an an-

tiferromagnetic semiconductor are modified with the
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Figure 5: Same as Fig. 2, but for an F-type antiferromagnetic semiconductor with classical spins with I S/2A = 0.3.

(Note the difference in the scale of the vertical line.)

change in temperature or antiferromagnetic ordering of
f spins over a wide range of exchange strengths. When
the exchange interaction is weak (see the case of (a)
IS/A = 0.1), the band, retaining a single band at para-
magnetic temperatures (T' > Ty ), splits into two sub-
bands below Ty ; this change is rather similar to that
reported in Ref. 1. The band-splitting below T is
caused by the reduction of the magnetic Brillouin zone,
and is called “Slater splitting” [7]. When the exchange
interaction is strong (see the case of (¢) IS/A = 0.3),
there already exist two subbands at paramagnetic tem-
peratures (T' > T) which are characterized mainly by
the coupling of the electron spin parallel or antiparal-
lel to the orientation of fspins. Below Ty, each sub-
band becomes narrower as the temperature approaches
T = 0. The physical results for I.5/A > 0.2 are first ob-
tained by the present improved approach. In Fig. 1 we
also include the product of the density of states of the

P-state and the half-bandwidth D,(w)A for discussion,
Dp(w)+ Do(w) = D(w). As long as the fspin is treated
as a classical spin, at all temperatures D(w) = D(—w)
and Dp(w) = Do(—w). At T = 0, the entire lower-
(higher-) energy subband consist of P-states (A-states);
D(w) = Dyp(w) for w < 0 and D(w) = Da(w) for w > 0.
With the increase in temperature from T' = 0, particu-
larly near the top of the lower-energy subband and/or
the bottom of the higher-energy subband, the hybrid of
the P-state and A-state begins, which suggests that the
electron state is strongly disturbed due to the thermal

fluctuation of fspins.

Since the result for a weak exchange strength
(1S/2A = 0.1) is almost similar to that reported in Ref.
1, we include a brief discussion here about the electron
states with a strong exchange interaction (IS/2A =
0.3). In order to demonstrate the effect of the magnetic

ordering of f spins on the conduction-electron state,
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we present £,(Z,) as a function of w in Fig. 2, and
Ey(E,) as a function of € in Fig. 3. At T =0, £, =
—IS and £, = +IS, so that E[= —Ve2 + A?] and
E.[= V€2 + A?] are real. Thus, at T = 0, the P-state
and A-state are energy eigenstates which are orthogo-
nal to each other. On the other hand, at T' > Ty, the
present theory gives ¥, = £, = Zcpa; ReXcpa(w) =
—ReXcpa(—w) and ImEcpp (w) = ImEgpa (—w), and
furthermore the quasiparticle energy w = € + Ycpa-
Therefore, for all temperatures, we take w = E,(¢) for
€ < 0and w = E,(g) for € > 0 that w = E,(€) [or
E,(e)] agrees with the result of the CPA at T > Tn
(see Eq. () and Fig. 3). As the temperature decreases
from Ty to T' = 0, the peak in |ImE,| (]ImX,|) shifts to
w = —IS(w = +185) (see Fig. 2), and is accompanied
by the shift of the top edge of the lower-energy sub-
band (the bottom edge of the higher-energy subband)
(see Fig. 1(c)). The conduction electron with the spin
which is antiparallel (parallel) to the orientation of the
fspin at that site is strongly scattered due to the fluc-
tuation of the fspin, particularly when it has an energy
near the peak in [Im,| (|Im5,)).

Figure 3 represents E,(¢)(Eq(¢)) for two cases of
w of the lower-energy subband: the left-hand side is
w/A = —1.0 (near the bottom edge) and the right-
hand side is w/A = —0.5 (near the top edge). For the

S(B)-type antiferromagnetic semiconductor, E,(e) =
Ep(—¢), and E,(g) = Eu(—¢). At Ty > T > 0, for
w <0, ImE,| > |ImE,| ; this suggests that the A-state
is more strongly disturbed than the P-state due to the
thermal fluctuation of fspins, as previously described.
(In contrast, [ImFE,| < [ImE,| for w > 0.) Comparing
the two results of w/A = —1.0 and w/A = —0.5, it is
verified that near the top of the lower-energy subband,
the A-state (especially € ~ 0) is strongly disturbed and
is correlated with the P-state due to the thermal fluc-

tuation of f spins.

3.2 F-type antiferromagnetic semicon-

ductors with classical spins

Figures 4-6 present the results for F-type antiferromag-
netic semiconductors with classical spins. The differ-
ence in the results between the S(B)-type and the F-
type arises from the distribution of & into £;(k) and
e2(k); for S(B)-type 1 = 0 and e, = ¢, while for F-
type €1 = €2 = €/2. In Fig. 4, the change of the density
of states for the F-type with temperature (or with an-
tiferromagnetic ordering of f spins) is shown for three
typical exchange strengths. The result for T > Ty also
agrees with that of the CPA, whereas the density of

states for T' = 0 is given by
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Figure 9: Same as Fig. 3, but for an S(B)-type antiferromagnetic semiconductor of S = 7/2 with IS/2A = 0.3.

(Note the difference in the scale of the vertical line.)

Dw)A =

for IS < |w| < [A + /A2 +4(15)%]/2 and 0 oth-
erwise. (A misprint in Eq. (3.3) of Ref. 1 is corrected
by Eq. (3. 2) in this paper.) Comparing Figs. 1 and 4,
the variation in the density of states with temperature
and/or with exchange strength is a common feature for
both the S(B)-type and the F-type. The difference is
that the S(B)-type has energies (w = =I.5) at which the
density of states diverge when T" = 0, while the F-type
has no such divergent point.

Since the result for the F-type with a weak exchange
strength (IS/2A = 0.1) is again similar to that re-
ported in Ref. 1, we briefly discuss here the case of a
strong exchange interaction (1.5/2A = 0.3). We present
Yp(w) and X4(w) in Fig. 5, and Ep(w) and E,(w) in
Fig. 6. AtT =0, X, = —IS and &, = +IS, so that
E,=[e-Ve?+ A?%)/2 and E, = [+ V2 + AZ]/2. On
the other hand, at T" > Ty, the present theory gives
Yp=2Xa = Zcpa, and E, = E, =+ Lgpa. Compar-

&)+ (%)

(3. 2)

ing Fig. 5 with Fig. 2, at T' = 0.5T, the peak in |[Im¥%,|
(ImX,|) is large and sharp, and furthermore, |ReS,|
(|ReXp|) varies rapidly near the energies of the peak.
The energy of the peak approaches 15 as T' — 0. The
effective potential that an s electron is subjected to in
the F-type is larger than that in the S(B)-type in the an-
tiferromagnetic temperature region (Iy > T > 0). The
reason why the s electron is strongly disturbed due to
the thermal fluctuation of fspins is because the electron
can transfer both between similar sublattice sites and
between different sublattice sites. Figure 6 shows that
ImE,| at w/A = —0.5 (see the right-hand side in Fig.
6) is rather larger than that at w/A = —1.0. This also
suggests that A-states (P-states) in a lower-energy sub-
band (higher-energy subband) are strongly influenced
by the thermally fluctuating fspins accompanying the
magnetization in the opposite orientation for different

sublattices.
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3.3 Effect of quantum spins

Thus far, we have discussed the conduction-electron
state in an antiferromagnetic semiconductor, assum-
ing a classical spin for the f spin. Here, we inves-
tigate how the quantum effect of the f spins modi-
fies the s electron interacting with antiferromagneti-
cally ordered f spins through the s-f exchange inter-
action. As long as the fspin is treated as a classi-
cal spin, we have D(w) = D(—w). For a finite mag-
nitude of f spin, however, D(w) # D(-w) in gen-

eral. When T = 0, in the classical-spin treatment
we can set £, = —IS and ¥, = +IS, while in the
quantum-spin treatment we have to set ¥, = —I.S and

Lo = +IS(1+ IF;)/(1 — IFy), where F} is calculated
self-consistently using £, and X, [see Eqgs. (2), (2) and
(2. 13) ]. This is, of course, due to the exchange scat-
tering by the quantum fluctuation of the fspin. Even
when f spins are completely antiferromagnetically or-
dered (or at 7" = 0), an s electron with down-spin on
the A sublattice site can flip its spin while conserving
the total spin (= S — 1/2). It should be emphasized
that Fy (not Fp) is used for calculating ¥, at T =0
because s electron states with down-spin are occupied
after spin flipping; F; consists of Fj, and F;, as shown
by Eq. (2. 8).

The results for an S(B)-type antiferromagnetic
semiconductor with S = % are presented in Figs. 7-
9. The values of < S, >, /S, calculated by applying
the molecular field approximation for S = %, are 0.0,
0.44, 0.87, and 1.0 for T > Tn, T = 0.9TN,0.5T, and
0, respectively. The density of states shown in Fig. 7
is asymmetrical or D(w) # D(—w), as a consequence
of the quantum f spin; The total number of states in
the lower-energy subband is greater than that of the
higher-energy subband. Even at T' = 0, there is no di-
vergent point in the density of states, unlike that of the
S(B)-type with classical spin. At T'= 0, the density of
states for the A-state, Dy (w), has a small peak near the
energy of w = —IS in the lower-energy subband. The
incorporation rate of the A-state into the lower-energy
subband depends on the temperature and/or the ex-

change strength.

Figure 8 shows the result for £,(w) and ¥4 (w) for
IS/A = 0.3. Comparing Fig. 8 with Fig. 2, the ef-

fect of the quantum spin appears strikingly on X, at

w < 0 with the decrease in 7. At T = 0, |[ImX,|
exhibits a sharp peak accompanied with a large change
in |ReX,|, as a result of the spin-flip scattering of an
s electron due to the s-f exchange interaction by the
complete antiferromagnetic ordering of f spins. The
results for Ep(e) and E,(e) are shown in Fig. 9 for
w/A = —1.0 (the left-hand side) and w/A = —0.5 (the
right-hand side). Comparing Fig. 9 with Fig. 3, both
results for w/A = —1.0 are similar, while the results
for w/A = —0.5 are very different. The large values
of |ImE,(¢)| and the strong modification in |ReEq ()|
at w/A = —0.5 result from the fact that not only
the thermal fluctuation of f spins but also the quan-
tum fluctuation enhances the exchange scattering of an
electron in the A -state, particularly near the top of
the lower-energy subband at antiferromagnetic temper-
atures (Iy > T > 0).

4 Concluding remarks

In this study, we aimed to devise an improved the-
ory for the s-f model in antiferromagnetic semiconduc-
tors that is applicable to a wide range of exchange
strengths and temperatures. For this purpose, we im-
proved the effective-medium approach for the s-f model
[1, 2] using the corrected Green function in the 2 x 2
sublattice Bloch function representation (7, 8, 9]. The
result revealed that the present improvement consider-
ably extends the applicable range of temperatures and
exchange strengths.

The numerical calculations were performed for three
cases of antiferromagnetic semiconductors: the S(B)-
type with classical spins, the F-type with classical spins,
and S(B)-type with quantum spins (S = ). The S(B)-
type and the F-type are classified according to their
distribution of electron transfer energy to the transfer
between similar and/or different sublattice sites. For
each case, the results for the density of states exhib-
ited “Slater splitting,” that is, band-splitting due to
the reduced magnetic Brillouin zone at T' < Tv. The
lower- (higher-) energy subband arises mainly from P-
(A-) states which are composed of Wannier electron
states in which the spin orientation is parallel (antipar-
allel) to the orientation of the fspin at each site. In
particular, when T = 0, for classical f spins, the en-

tire lower- (higher-) energy subband consists of P- (A-)
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states. The effect of the antiferromagnetic ordering of
f spins on the s electron states is felt markedly at the
energies near the top (bottom) of the lower- (higher-)
energy subband. The electrons with the energies near
the top (bottom) of the lower- (higher-) energy subband
are strongly disturbed by the development in antiferro-
magnetic ordering through the s-fexchange interaction.
Furthermore, the hybridization of the P-state and the
A-state due to thermal fluctuation of f spins also oc-
curs, especially near the top of the lower-energy sub-
band and/or the bottom of the higher-energy subband.
The s electron in an F-type antiferromagnetic semicon-
ductor is more strongly affected than in an S(B)-type
one due to the fluctuation of f spins because it transfers
between similar and different sublattices. The quantum
effect of f spins adds another complication because it
enables the spin-flip of a minority-spin electron even at
T = 0. All these effects occur especially near the top
of the lower-energy subband and/or the bottom of the
higher-energy subband. The present study reveals how
the conduction electron state is affected by the anti-
ferromagnetic ordering of f spins for a wide range of

exchange strengths and temperatures.

In this paper, however, we did not present the nu-
merical result for the F-type antiferromagnetic semi-
conductor with quantum f spins because of the poorer
convergence during the iteration process. Furthermore,
throughout this study, calculation was performed only
for the model density of states of semicircular form.
Calculation combining the present method with a real-
istic band structure of EuTe is desirable. We plan to

examine these problems.
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