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Abstract

We investigate the property of a non-symmetric numerical semigroup generated by
three elements. We consider the numerical semigroups generated by at least 4 elements
with the property which is said to be neat. The concept of a neat semigroup is a gene-
ralization of that of a non-symmetric semigroup generated by three elements. Moreover,
the notions of ”quasi-toric type” and "toric type” are introduced to neat semigroups.
give scveral
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§1. Introduction.

Let N be the additive semigroup of non-negative integers. A subsemigroup H of N is called a
numerical semigroup of genus g if its complement N\H is a finite set consisting of g elements. We

denote the genus of H by g(H). We define
¢(H) = Min{c e Nle+ N C H},

which is called the conductor of H. Then the inequality ¢(H) < 2g(H) holds. The numerical semigroup
H is said to be symmetric if ¢(H) = 2g(H). In this paper, we concern ourselves with non-symmetric
numerical semigroups generated by three elements. Firstly, we invetsigate the property of these semi-
groups. Second, we consider numerical semigroups generated by at least four elements with the same
property as the non-symmetric semigroups generated by three elements has, which are called neat nu-
merical semigroups. We introduce a new notion into neat numerical semigroups, which is said to be
of quasi-toric type. A numerical semigroup of quasi-toric type means that we can associate an affine
toric variety to its relations. We give several numerical semigroups of quasi-toric type. Especially, we
prove that any neat numerical semigroup generated by four elements is of quasi-toric type. Moreover,
we consider a l-neat numerical semigroup, which means that it is a neat numerical semigroup with one
more condition. We can show that a 1-neat numerical semigroup generated by four elements is of toric
type, which implies that it is Weierstrass. Roughly speaking, a numerical semigroup of quasi-toric type
is said to be of toric type if the defining ideal of its associated affine toric variety describes that of the

semigroup ring of H.
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§2. Non-symmetric numerical semigroups generated by three elements.

First we review Herzog’s result!) on non-symmetric numerical semigroups generated by three ele-

ments.

Definition 2.1. For a numerical semigroup H we denote by M(H) the minimal set of generators
for H. Let M(H) = {ai,as,... ,a,}. Foreachi=1,2,... n we set

o; = Min{a|aa; €< ay,...,a;1,8;41,... ,a, >}

where for any non-negative integers by, ... b, the set < by,... b, > means the semigroup generated

by bl,... ,bm.

Example 2.2. i) Let H =< 4,5,6 >. Then g(H) =4 and ¢(H) = 8. Hence H is symmetric. If we
set a; =4, a; =5 and a3 = 6, then a1 =3, ay =2 and a3 = 2.
i) Let H =<4,5,7>. Then g(H) =4 and ¢(H) = 7. Hence H is non-symmetric. If we set a; = 4,

a; =5 and azg =7, then a; =3, ay = 3 and a3 = 2.
The following fact is due to Herzog.

Remark 2.3. Let H be a non-symmetric numerical semigroup with M(H) = {ay,as,a3}. We have

the following relations:
1@y = 20y + 1303, @Ay = @910 + y3a3, (303 = az1a] + Az0dy

where o = ag; + a3y, ay = a2 + azs, a3z = a3 + asz and 0 < a;j < aj,all 1,5 1) In this case a;j’s

are uniquely determined.

Example 2.4. Let the notation be as in Example 2.2 ii). Then we have the folloing relations.

3(11 = ay + as, 3(12 = 2(11 + as, 2(13 =a; + 20.2.

Moreover, we get the following result on the coefficients of the relations:

. 3 « —« o
Lemma 2.5. Let the notation be as in Remark 2.3. We have ! = vasz for some positive

—Q21 (&3]

integer v.

Proof. Consider

Q1a) — 120 = (1303.
—Q2101 + aay = ay3ag

We get
. —oy2|
= a1 — ai20m) = azyazy + asi(ajz + asy) > 0.
— Q21 Qg
Therefore we have
@13 —ag2 Q1 —Qy3 @1 Q13 a;p  —Qay2
a; = as and as = as
Q23 a? —Q2 a? —31 Q23 —Qy) az
. ; : ; ay Q13
Since H =< aj,ay,a3 > is a numerical semigroup, we have (ay,az,a3) = 1. Hence must
—Q31 Qa3
be divisible by as. ]
" . . ‘ a;  —ap2
Proposition 2.6. Let the notation be as in Remark 2.3. Then we have = az.
—aQy o
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Proof. We set
Ly = {aa; + Bas|0 < a < a3z —1,0< f<az—1, (e, ) # (0,0)}

and Lg = {‘7(11 +5(12|(131 S 35 S [0 S 1,0 S ) S 39 — ].}

Let L = L; ULy U {az}. We want to show that | # [’ mod a3 for distinct [ and l! € L. First, it 1s
proved that [ # 0 mod a3 for any | € Ly U L. In fact, assume that | = aa; + Bas € L, such that
1 =0 mod as. Then kaz = aa; + Bas with k > az. We get (k — as)az + (a3 — @)a; = (f — az)as.
Since 0 < 3 — agy < ay — 1, this is a contradiction. Thus, we get [ # 0 mod a3 for [ € L;. Similarly
we obtain [ # 0 mod aj for I € Ly. Second, we can show that | # !’ mod a3 for any distinct | and
I' e L. Let | = aay + Pay and I’ = a’a; + B'as. Assume that [ =1’ mod a3. Then we may assume
that (a — a')a; + (B — #')as = kaz with k > az. If @ —a’ > 0 and B — 3’ > 0, then we have

(B —B')as = (k — az)az + (a3 — (@ — &’))ay + aszay with 0 < B — ' < ap — 1,

which is a contradiction. In the other cases we also get a contradiction. Similarly it is showed that
1 # 1’ mod a3 for any distinct [ and I" € Ly. Lastly, let | = aa; + Bas € Ly and I = ya; + day € Ls.
Assumee that { =1’ mod as. If { > I, then we have (a — v)a; + (8 — d)az = Kaz with k > 0, which 1s
a contradiction. If { < I’, then we have (v — a)a; + (6 — B)as = kaz withh & > 0, which implies that

(y — a)a; = (k — as)as + az1a; + (az — (6 — B))as.
This is a contradiction. By the above we get
az > L = asaz; — 1+ (a1 — az1)asy + 1 = azaz; + azas.
It follows from Lemma 2.5 that
03] + Q133 = @1y — Q10 = Vag > A3,
which implies that aja; — aj2a21 = as. a
Example 2.7. Let the notation be as in Example 2.2 ii). Then we have

3 -1
—2 3

Q) —0p2 —7—a
=T7=as.
—Q3] Qaz

§3. Numerical semigroups of quasi-toric type.
First we generalize the notion of a non-symmetric numerical semigroups generated by three elements.

Definition 3.1. i) Let H be a numerical semigroup with M(H) = {ai,... ,an}. A system of

relations
aja; = apaag + -+ Qipdp
Apldy = Gp1a) SRR Opn—10n-1
satisfying
aj =agj+ - Fajo1jtajp oo forany j=1,...,n and 0 < o;; < a; for all 7, j

1s sald to be neat.

ii) A numerical semigroup H is said to be neat if it has a neat system of relations.
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Example 3.2. i) Any non-symmetric numerical semigroup H with M (H) = 3 is neat by Remark
2.3.
ii) Let H be a numerical semigroup with M(H) = {10,11,13,14}. We set a; = 10, ay = 11, ay = 13

and a4 = 14. There i1s a unique neat system of relations
da; = 2a3 + a4, 3ay = 2a; + a3, 3az = ay + 2a4 and a4 = 2a; + 24,

which implies that H is neat.
i) Let H be a numerical semigroup with M (H) = {20,24,25,31}. We set a, = 20, a, = 24, a3 = 25

and as = 31. We have a unique neat system of relations
4(11 = as + as + agq, 40,2 = 2(11 + as +a4, 3&3 = a; + a9 +a4 and 3&4 = ay + 2(12 + as,

which implies that H is neat.

iv) For any integer n > 5 let H,, be a numerical semigroup with
M(Hy,) ={a1=n,as=n+1la3=2n+3,a4 =2n+4,... ;a,_1 =2n+n—1}.
Then we have a neat system of relations
ara; =4a) = ay + ap_1, azay = 3a; = ay + as, azaz = 2a3 = 2as + aa,
aia; = 2a; = aj—1 +aiy; (A<i<n—2), ap_1ap_1 =2a,_1 = 3a; + an_».
Hence [, is a neat numerical semigroup.

Here we study a relation module for a numereical semigroup in order to introduce a new notion into

its syetem of relations.

Definition 3.3. Let H be a numerical semigroup with M (H) = {a;,... ,a,}. The Z—module R =
{(ri.r2,...,ry) € Z"| 300 ria; = 0} is called a relation module for H, which is uniquely determined
if the numbering of the elements of M (H) is fixed.

Lemma 3.4. Let the notation be as in Definition 3.3. Then a relation module for H is a free
Z—module of rank n — 1.

Proof. Let p* : N — H be a homomorphism of semigroups sending e; to a; where ¢; denotes the
vector whose i—th component is 1 and j—th component is 0 for j # i. We set p = {(v,v')[p*(v) =
p”(v')}, which is an equivalence relation on N*. Then N" /p = H, which implies that Z"/R,(H) = 7 V)

where we set R,(H) = {v—v'|(v,v") € p}. We have an exact sequence
0— R,(H) 7' —Z—0
of free Z—modules, which implies that
rank R,(H) =rank Z" —rank Z =n — 1.
Since R,(H) is the relation module for H, we get our desired result. 0
We need the following definition when we associate an affine toric variety with a semigroup.

Definition 3.5. Let S be a subsemigroup of Z". We say that S is saturated if the condition nr € S,

where n is a positive integer and r an element of Z", implies that r € S.

Using Lemma 3.4 we can introduce the following definition:
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Definition 3.6. Consider an order on the set I = {(i,j)|1 <i < n,1< j < n,i# j}, which is fixed.

Let H be a neat numerical semigroup with M(H) = {ay,... ,a,}. Take a neat system of relations

Qip_10p_1+  + Qpn_2p-10n_1 +app_10p_1 = Qp_1Ap_1 = Q@y_1101 + -+ Qp_1n—20n_2 + p_1nln

Qiplp + ++ + Qpn_1nln = Apln = Ap1dy + -+ apn-10n-1

Assume that

aq —Qa12 ot TQip-1
—Q21 a3 cer —Qp—1 0
—Qp_11 —Qnp_12 - Qp_1

We set N = #{(i, j)|eij # 0} — (n — 1). We associate the vector in ZN with a;ja; by induction on i
which means the i—th relation in the neat system of relations. Let i be fixed. We denote by (k;,l;) the

maximum of the set
L,- = ({(],Z)'QN ;é 0} U {(i,j)laij 56 0})0(1\ U;y_zll LP)

We number successively the elements (i, j) of the set L; by o(i,) in the given order if (¢, j) # (ki,li).

We associate the vector by(; j) = €o(i,;) With ajja; if (1,7) # (ki, ;). For oy, a;, we consider

from the i— th relation in the neat system. Using the relation we can associate the vector On4i
with ok, a;,, because we already have associated some vector with apga,. Thus, we can construct
the subsemigroup S =< b1,... ,bnyyn—1 > of ZN . The neat numerical semigroup H is said to be of

quasi-toric type if the semigroup S is saturated.

The reason why H is said to be of quasi-toric type is that if the associated semigroup S is saturated

then the affine scheme Spec k[S] becomes an affine toric variety where k is an algebraically closed field.

Remark 3.7. Let the notation be as in Definition 3.6. Let the neat system of relations be fixed. Then
the property of ”quasi-toric type” does not depend on the choices of the numbering of the elements of
M (H) and the order on the set I = {(i,j)[1 <1 <n,1 < j <n,i# j}, because the two subsemigroups

of ZVN are isomorphic through a suitable bijective correspondence of the set I.

Example 3.8. Let H be a non-symmetric numerical semigroup with M(H) = {ay,as,as}. By

Remark 2.3 we have the neat system of relations

aja; = (g1 + @31)a; = ajaas + a13a3.
agay = (a1 + agg)as = agia; + aszas

asaz = (@13 + @3)az = az1a; + az2a:

We define the order on the set {(,7)]i,j = 1,2,3 and i # j} as follows: (i,7) < (¢',j') if 7j < j"" or
»j = j', i <. Then the associated subsemigroup S of Z* is generated by by = ey, by = ey, bz = ea,

by = eq, bs = (1,1,—1,0) and bg = (—1,0,1,1). To show that S is saturated it suffices to check that
6 6
ZR#),- nz! C S where Ry denotes the set of non-negative real numbers. In fact, let z = Z \b; ezt

i=1 1=1

with \; € R;. We may assume that 0 < A; < 1 for each i. Then it is easy to see that z € S. Thus, S

is saturated, which implies that H is of quasi-toric type.

We get several examples of quasi-toric type in the case where M (H) = n.
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Proposition 3.9. Let H be a neat numerical semigroup with M(H) = {ay,... ,a,} such that it has
a neat system of relations
a1a; = aj2a2 + -+ arady,

Aplp = Up1ay + -+ App—10n—1

with
g =012 € & Fr |
—Q2] @y R 6 ) T |
0.
—Qp_11 —Qp_13 - Ap_q

Moreover, suppose that a;; > 0 for all i,j. Then H is of quasi-toric type.
Proof. We note that {(i, j)|ei; # 0} = {(4,j)]1 <i<n,1<j<nandi# j} =1, which implies
that its cadinality is n(n — 1). We define the order on the set I as follows: (i,j) < (i, ;') if "j < j” or

7j =7, i <. Then we get the associated subsemigroup
S=<b =eq,... ,b(n_1)2 = e(n—l)zvb(n—1)2+lr R 7bn(n—1) >

of Z(n=1)° through the method in Definition 3.6. Consider the n(n — 1) by (n — 1)? matrix

(bl .- 'b(n_1)2b(n-—l)2+l T bn(n—l))'

In the matrix —1 appears at most once in each column, from which it is easy to show that S is saturated.

Therefore, H is of quasi-toric type. ]

Example 3.10. Let H be the numerical semigroup with M(H) = {20,24,25,31} in Example 3.2
iii). By Proposition 3.9 it is of quasi-toric type.

We can generalize the above Proposition to the following two statements:

Proposition 3.11. Let H be a neat numerical semigroup with M(H) = {ay,... ,a,} as in Propo-
sitron 3.9. Suppose that there is some jo with 1 < jo < n such that aij, > 0 for alli. Then H is of
quasi-toric type.

Proof. Interchanging the numbering j, and n we may assume that j, = n. We introduce the order
on the set [ as follows: (7,j) < (¢/,j') if ”j < j”” or ”j = j’, i < #'”. Let i be fixed. Then —1 appears
at the position of a;;a; for each j # i in the vector corresponding to a;na,. But 0 or 1 appears at the
position of a;ja; for each j # i in the vector corresponding to ayna, for each k # i. It is easily seen

that the associated semigroup S is saturated. Therefore, H is of quasi-toric type. O.

Proposition 3.12. Let H be a neat numerical semigroup with M(H) = {ai,... ,a,} as in Propo-
sition 3.9. Suppose that there is some iy with 1 < iy < n such that ajo; > 0 for all j. Then H is of
quasi-toric type.

Proof. Interchanging the numbering iy and n we may assume that iy = n. We introduce the order
on the set I as follows: (i,j) < (¢,5) if "i <17 or "i =, j < j'". Let j be fixed. Then —1 appears
at the position of a;ja; for each i # j in the vector corresponding to apja;. But 0 or 1 appears at the
position of a;ja; for each i # j in the vector corresponding to aniay for each k # j. It is easily seen

that the associated semigroup S is saturated. Therefore, H is of quasi-toric type. a.

Proposition 3.13. Let H be a neat numerical semigroup with M(H) = {ay, ... ,an} such that it
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has a neat system of relations

a1a; = Q1pdy + @120
Qoay = (91a] + (2303

Qply = Qpp_10n_1 + Qp10;

with
(631 —Q12 R © 5 T |
—Qa21 a2 et TQop—1
—Qp-11 —Qp-12 - an—1

where we set a;j = 0 if ajja; does not appear in the system of relations. Then H 1s of quasi-toric type.

Proof. We introduce the order on the set I as follows: (¢,j) < (¢,j/)if "j < j” or "j=j", i >1'".

Then we get the associated subsemigroup
S=<b =er,... ,bng1 =e€ng1,bnqo, ..

of Z"*! through the method in Definition 3.6 where

> 7b2n >

boyo =(1,1,-1,0,...,0) and b,4y;j_1 =e_p3; for j=4,... ,n+ 1

Here e_4 3 ; is the vector in Z"*+1 whose second component is —1, third component is 1, j—th component

is 1 and the other components are 0. Then S is saturated?). Hence H is of quasi-toric type. a.

Example 3.14. For any integer n > 5 let H,, be a numerical semigroup with

M(H,)={a1=n,as=n+1l,a3=2n+3,a4 =2n+4,... ;a1 =2n+n—1}

in Example 3.2 iv). By Proposition 3.13 H,, is of quasi-toric type.

We can prove that a neat numerical semigroup is of quasi-toric type if it is genrated by four elements.

Theorem 3.15. Let H be a neat numerical semigroup with M(H) = {a1,a2,a3,a4}. Then it is of

quasi-toric type.

Proof. Let
Q1a; = 1203 + 01303 + (1404

Qa9 = (210 + 3a3 + (404
a3a3 = 3101 + 3209 + 3404

404 = 4107 + Q202 + Q4303

be a unique neat system of relations for H. We note that

(&3] —Q12 —@3
—Q12 —013 aq
D=|-ay Qs —Qg3 | = (41 — Qg2
&3] —a23 —Q2]
—Q3] —Q32 a3

—13
+ a3

—23

aq

—Q2)

—Qq2

9

= g1 (12093 + @a13) + agz(o o3 + azais) + aaz(ag(ase + 42) + (@31 + aq)az) > 0.

In fact, if ay3 > 0, then D > 0 because of aszc(aszy + ags) > 0. If ays = 0, then ay; > 0 and
a3 > 0, which implies that D > 0. Since we may exclude the cases of Propositions 3.11 and 3.12,
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renumbering ai, @z, az and a4 it suffices to consider the case where aja; = a0y + a14a4, which implies

that a3 = a3 + a43. Moreover, we have
Tagay = 91a)] + 93a3 OF (o3a3 + pqdy’ and "ag4a4 = 4101 + (rg3a3 OF (909 + (vg3a3’ .

Case 1). asay = az1a; + agzaz and agaq = ag1a; + agsaz. Then azaz = asyas + asgas. This case is
reduced to Proposition 3.13.

Case 2). azaz = azia) + azzaz and agas = o490z + ag3as. Then azaz = azya, + azgay. Hence we get
] = a9 + a3y, @y = a2 + g2, 3 = o3 + a4z and ag = a4 + as4. We introduce the order on the

set [ as follows: (i,j) < (¢,j') if "j < j” or "j = j', i <i"”. Then we get the associated subsemigroup
S=<by =ey,... bs=es5,bs, b7, bg >

of Z® through the method in Definition 3.6 where bg = ¢, +eo—es, by = e1+es4—e3 and bg = ey t-e5—e4.
8

Take Zz\ibi € 7° = (1, ps), with 0 < A; < 1. Then g1 = A1 + A + A7, fa = Ay + g + As,
g=1

H3 = /\3—/\5—/\7Y Hq4 = /\4—{—)\7—/\8 and Hs = A5—}—/\8. If,u;g = /\3—/\5—/\7 = —1, then we

must have Ag > 0 and A\; > 0, which implies that yg; > 1 and ps > 1. Thus, we may assume that

(1,1,—1,0,0) = bg € S. Hence S is saturated.

Case 3). asas = aszaz + asgay and agay = aga; + aszas. We introduce the order on the set [ as

follows: (3, j) < (¢',j") if "j < j™ or "j = j', i <i"”. Then we get the associated subsemigroup
S=<b =ey, ... bs=es5,bs b7, bg >

of Z® through the method in Definition 3.6 where bg = e1+ey—es, by = esteq—e5 and bg = €1 +e4—e5
In the similar way to Case 2) we can show that S is saturated.
Case 4). asas = aszaz + azgas and agaq = agnas + agzas. In this case at most one a;; appears. This

contradicts the neatness of H. O
§4. Numerical semigroups of toric type.

In this section we consider a numerical semigroup H of quasi-toric type such that the associated
saturated semigroup S determines the structure of the semigroup H in some sense. The section is

concerned with the following neat numerical semigroups.

Definition 4.1. Let H be a neat numerical semigroup with M (H) = {a;,... ,a,} such that it has

a neat system of relations

Aplp = Qp1dy] + -+ Qpp_1dy_

It 1s said to be I-neat if

aj —a12 T T Qin-
—Qa2 (&3 o TQ2p—1
=apy.
—Qp-11 —Qp_12 - Qp—1

By Proposition 2.6 we get the following example:
Example 4.2. Any non-symmetric numerical semigroup H with M(H) = {a;, as, as} is l-neat.

When H is a 1-neat numercial semigroup using the following proposition we can give a basis for its
relation Z—module defined in Definition 3.3:
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Proposition 4.3. Let H be a numerical semigroup with M(H) = {ay,... ,an}. Let v; = (ri1,7ia,

. ,Tin) be an element of the relation module R for H for eachi=1,... ,n— 1. Assume that
11 T12 Tin-1
T21 22 Tan—1
= *a,.
Tn-11 Tn-12 Tn—1n-1
Thenry, ... ,r,_1 form a basis for the Z—module R.

Proof. Let s = (s1,...,sn) € R. By the assumption and Lemma 3.4 we have an expression
s=cir1+ -+ cp_1rn_1, ¢; € Q for all 7.

We want to show that ¢; € Z for all i. It follows from the above equations that

11 r12 Tin-1
1
C; = 81 S9 Sn—1
+a, "
Tn-11 Tn-12 n—1n-1

where (s159-+-5,-1) is the i—th row. Consider the following system of linear equations

homomorphism sending Y; to 7%, n :

Let H be a neat numerical semigroup with M(H) = {ay, ...

L K[X] = k[Xy,...

We set N = {(i,j)|eij # 0} — (n — 1). We get the associated subsemigroup S =< by,.
of ZV. Let k be a field. Let og

homomorphism sending X; to t*, m : k[Y] = k[Y1,.

f r11a1 + 71202 + -+ Pip_1dp_1 = —Tipdy.
s1a1 + S2a2 + -+ -+ Sp_1Up_1 = —Spap
rp—11a1 + Pp_12d2 +  + Tno1p—10n-1 = —Tp—1ndn
If ¢; #0, ay, divides
11 T12 Tin—-1-
a; S1 S9 Sp—1
Tn—11 Tn—12 Tn—1n-1
for each j =1,...,n — 1. Since (aj,... ,a,) =1, we get
11 T12 Tin—1-
S1 59 Sn—1 = Vian
Tn-11 Tn-12 Fn—1n-1
for some v; € Z. Thus, ¢; must be an integer. |

.y, } with a fixed neat system of relations.

byt >

, Xn] — k[H] = k[t"]sen be a k—algebra
o Yngno1] — k[S] = k[T"]es a k—algebra

k[Y] — k[X] a k—algebra homomorphism sending ¥; to g =
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.\';t" if b, corresponds to a;ja; and ¢ : k[NN] = k[t1,... ky] — k[H] a k—algebra homomorphism
sending t; to t(9) where the weight w on k[X] is defined by w(X;) = a; and w(c) =0 for ¢ € k*. By
the definition of b;’s ¢ extends to ¢’ : k[S] —> k[H]. Then we get o5 on = (' o w, which implies that

Ker oy D n(Ker 7).

Definition 4.4. Let the notation be as in the above. A neat numerical semigroup H is said to be
of toric type if it is of quasi-toric type and we have an isomorphism k[H] = k[S] @[y k[X], that is to
say, Ker pg = n(Ker 7).

Remark 4.5. A numerical semigroup of toric type is Weierstrass®) | where a numerical semigroup H

is said to be Weuerstrass if there is a pointed non-singular complete curve (C, P) over an algebraically
closed field such that

H = {n € N| there is a rational function f on C' with (f). = nP}.

Example 4.6. i) Any non-symmetric numerical semigroup with M(H) = {a;, as,as} is of toric
type, because we know that the ideal Ker ¢g is generated by X{" — X712 X512 X3 — X1 X2 and
X$ — X X5 (See 1)).

11) For any integer n > 5 let H,, be a numerical semigroup with
M(H,)={a;=n,as=n+1l,a3=2n+3,a4 =2n+4,... ,a,_1 =2n+n—1}
with the neat system of relations as in Example 3.2 1v). Then the ideal Ker. v, 1s generated by
X5 — X1 X3, XoX; - X1 Xj113<j<n—=2), XoXpo1 — X XaXj — X2X;1(3<j<n-2),
XaXno1—X2X3, X X;— Xi1Xj41(4<i<n—=2,i<j<n-2), X;X,_1—-Xi1 X34 <i<n-1)%.
It is proved that H, is of toric type.

As we see in the above examples, to show that a numerical semigroup H of quasi-toric type is of
toric type we need to determine a set of generators for the ideal Ker pg. In the case where H is
a neat numerical semigroup generated by four elements a set of generators for the ideal Ker ¢y is

determined ®. Hence considering Proposition 4.3 we get the following theorem:
Theorem 4.7. A I-neat numerical semigroup with M(H) = {ay, as, as,as} is of toric type.
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