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Abstract

A procedure for the calculation of the dynamical coherent approximation (dynamical CPA) is

discussed. In the case of classical localized spins the density of states is symmetrical about the

energy center w = 0. In the case of a finite magnitude of localized spins, it is not symmetrical

due to the effect of quantum.
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1 Introduction

In the series of our works applying the dynamical
coherent approximation (dynamical CPA) to a sim-
ple model, we have studied the carrier state in diluted
magnetic semiconductors (DMS). In these works clas-
sical spins are assumed for localized spins for simplic-
ity [1-7]. The localized spins, however, have a magni-
tude of S = 5/2 for Mn ions. The effect of the finite
magnitude of localized spins, therefore, needs to be
investigated. Hence, in this report, we discuss a pro-
cedure for applying the dynamical CPA to the simple

model with finite magnitude of localized spins.

2 Model Hamiltonian

In this report we consider a model that a carrier
moves in a randomly distributed potential. We as-
sume E4 for the potential on a non-magnetic site A,
while we assume Ejpr — Io - S,, for the potential on a
magnetic site M. Here, S,, is the operator of the local-
ized spin of a magnitude of S at a magnetic ion. The
symbol o is the Pauli matrix for the carrier, and I is
the exchange interaction coupling constant between
the carrier and the localized spin. The other nota-
tions used here have the usual meaning. We assume

that the potential is randomly distributed. Thus, the

Hamiltonian for the model is represented by

H = Hy+)Y un=Hy+U. (1)

Hj is a suitably chosen periodic Hamiltonian which
is assumed to be known, and U is the total single
particle potential, expressed as a sum of potentials
u, contributed by each site n. wu, takes uZ or uM
if the site n is occupied, respectively, by an A or M

atom. U, and hence H, are configuration dependent.

1
Hy = Zekazuak” ZNZEmnaIn#any (2)
kp mnp
’U,ﬁ - ZEAQLMany, (3)
n
uM =

ZEMaImanu - IZaL“a -Snany. (4)
n py

Hereafter we set E4 = 0.

3 Model density of states

Throughout this work we assume a model den-
sity of states with a semicircular profile whose half-
bandwidth is A,

2 €\2
w0 = 2z (3) ®)
as the unperturbed density of states. Then, the di-

agonal component of the Green function is calculated
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as

I p(e)
Fulw) = /_Ad“:w—wz#(w)

2 w—3, w—3, ’
= — — —F ) =13 . (7
1(52) == o
The equation leads to

F,A
L, _ w__1 FA (8)

where we set F, = F,(w) and ¥, = ¥,(w) for sim-
plicity. Here, ¥, is the coherent potential with the
spin of p (u =71 or |). The density of states with p

spin Dy, (w) is calculated as

D) = —%ImF,, ) ()

4 Calculation for completely ferro-

magnetic case

4.1 Carrier with up spin

In the completely ferromagnetic case, S, = S. Thus,
a carrier with up-spin moving in the effective medium
feels the potential of Ea — IS — £+ at a magnetic
site. No spin flip occurs. Therefore, the t-matrix ele-
ment for the magnetic site embedded in the effective
medium is given by
Ep — %4

1-(Eg - Iy)Fy’
where Eg = Ej)y — IS. Thus, the CPA condition is
given by

H = (10)

1-a)th+at} = 0 (11)
or
EA - ET‘ EB = ZT
11—z & = 0.
A= (Ba=Z1)Fr " 1-(Ep—X)F;
(12)

Inserting Eq. (8) to (12), we obtain a cubic equation
for FyA[= Fy(w)A] as

(F1A)? + a(FrA)? + b(FyA) +¢=0 (13)
where

o = 4(BrrBazi) (14)

b = 4{1+4(‘”_E/2§w_EB)} (15)

. - 16{(1—96)(EB —AEA) —w+EA} (16)

B-30 (2006)
4.2 Carrier with down spin

In the case of classical localized spins, the situation
is very simple. We can use Eq. (13) with the coeffi-
cients of (14)-(16) only after changing Eg = Ep; — 1S
to Eg = Ep + IS because a carrier with down-
spin moves in the effective medium without spin flip.
When we consider the effect of a finite value of S
(localized spin), however, the situation becomes cum-
bersome. The spin of the carrier can flip with the
conservation of the total spin. This is the quantum
effect due to a finite value of S. The t-matrix ele-
ment for the scattering of carrier with down spin by
the magnetic site embedded in the effective medium
is given by (see Appendix A in Ref.[7])
Vi+ B W, - V,Uy)
1= FRUy - Fi[V, + By (W, = V| Uy)]
(17)

M _
ty =

In the completely ferromagnetic case, after setting

S, =S, we have

VT = EM—ISZ—ET:EM——IS—ET (18)
Vi = Ey+1S.-Z,=Ey+I1S-X% (19)
UT = EM—I(SZ—I)—ET
= Ey-I(S-1)-%4 (20)
Ul = EM+I(SZ+1)—Z¢
= Em+I(S+1)-%, (21)
Wy = I*[S(S+1)-52-5.]=0 (22)
W, = IP[S(S+1)-82+65.]=2I>S (23)
The CPA condition is given by
(1—a)tf +at)] = 0 (24)
or
EA — Zl
l—u
( )1—(EA—E¢)F¢
. Vi+ B (W, -V,Ur) -0
1= FUy = F[V, + By (W, - V,Uy)]
(25)

Inserting Eq. (8) to (25), we obtain a cubic equation
for FiA[E Fl(w)A] as

(FLA) +a(FLA)2 +b(FLA) +¢=0 (26)
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where
. = 4<EC+$2_‘”) (27)
b o= 4{1+4(°"_EAA)§“’—EC)} (28)
c = 16{(1"”)(EC_AE")"“’+EA}.(29)

Here, Ec = Ep + 1S + Q; @Q denotes the effect of the
finite value of S, and given by

W, w,
= 30
@ I—FTUT FT_I—UT ( )
2
_ — 2I°S (31)
9 (18)% 1
- (A) s . (32)

2B+ R (1-3) - 1(F2)
Therefore, the carrier state in the completely ferro-
magnetic state ((S;) = S) is calculated as follows.
First, the carrier state with up-spin is calculated by
solving the cubic equation on F}+A (i.e., Eq. (13) with
(14) ~ (16)) for a given value of w and for assumed
values of Ep /A and IS/A. Next, using F3A deter-
mined above, @ is calculated by Eq. (32). Then,
a, b and c are calculated by Eqs. (27) ~ (29). The
carrier state with down-spin is calculated by solving
Eq. (22). Therefore, F4A affects the result of F|A
through c (of Eq. (29)) where @ defined by Eq. (32)

is employed.

5 Calculations for paramagnetic case

For paramagnetic states of (S,) = 0, F} = F, =
F, and ¥4 = ¥ = ¥. Thus, the ¢ matrix is given by

tM () = )

By —IS-%
p{l—F(EM—IS—E)}
Ey+I(S+1) %
g {I—F(EM+I(S+1)—E)} W)

1
where p = <25k;,—:_ 1) and a = <2Si— 1). Equation
(33) is a consequence that the exchange term —Io - S

has two energy eigenvalues, —IS (with 2S5 + 2-fold
degeneracy) and I(S + 1) (with 2S-fold degeneracy).
Therefore, the CPA condition

Q-2 +ztM = 0 (34)

results in the CPA condition for a ternary alloy in
which three species of atom having the energy level
of B, =Ey — IS, E, =Ey+I(S+1) and E4 are

distributed at random with the fraction of zp, za, and

1—ux;
Ey-—-%
I .. S S
Q= E,—oF
+ _Bo% +za—Ea—Z =0
I E, -0 F "1 (B, —n)F
(35)
In order to solve Equation (35) we set
£ = ! +X (36)
= 3 )

Then, the CPA condition (35) results in a quartic

equation for £

E+AB+BE+CE+D = 0. (37)

Here,
= —(w+Es+E,+E,) (38)
A2
= o +tw(Ba+Ep+E,)+ EpE, (39)
C = —{wl(EpEs+ EAE,+ EAE,)|+ EsE,E,

+A_2[(1 —2)(Ep + Eo) + z(E4 + pE. + aE,)] }

4
(40)

A2
D = wE,E,E4s+ T[(l —z)EyE, + z(pE, + aE,)]

(41)
If € is obtained for w, F' is calculated by
4

The density of states is calculated by Eq. (9).

6 Calculation for ferromagnetic states

6.1 Thermal average operation

If the magnetization m = (S,)/S (0 < m < 1)is
given, the parameter A is determined so as to satisfy

the equation

~
1 AS* @z _
ST o S;Se S$* = mS. (43)

Employing the parameter A determined above, the

thermal average of the t-matrix over the fluctuating
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localized spins is taken as

Ly

AS* M
5 e 13(S57).
Ysi——5€" gizlg

tM(S.) =

(44)

6.2 Initial values for coherent poten-

tials

For a finite magnetization m, the CPA condition can
not be solved analytically. Thus, we have to solve the
CPA equations numerically. In the numerical pro-
cedure it is strongly desirable to take suitable initial
value for the coherent potential ¥,. In the completely
ferromagnetic case (m = 1), we can obtain the coher-
ent potential with 1 spin, ¥ (= w — FT—I — FyA%/4),
(16).
Then we can obtain the coherent potential with | spin
¥} by solving the cubic equation (26) with (27) ~
(29).
the other hand, we can obtain the coherent potential
%0(= ¥ = £J) by solving the quartic equation for
E(=X+ F71) or Eq. (37) with (38) ~ (41).

When the magnetization is m, thus, we take initial

by solving the cubic equation (13) with (14) ~

In the case of paramagnetic (m = 0) case, on

values for the coherent potential ¥ as

P = (1-m)Z® +mE;

o= 1-m)E’ +m3.

6.3 Iteration approach

The iteration method for the s-f model is presented
in Appendix A in Ref. [8].
In the case of diluted magnetic semiconductors,

the CPA condition is written as

(47)

11—zt +ztf) = 0
0. (48)

(L-2)tf, +a(t)]) =

The t-matrix t% includes not only 1 components as
Fy and ¥4 but also | component as F| and ¥;. There-
fore, we have to solve Eqs. (47) and (48) simultane-
ously. In order to calculate ¥4+ and ¥ by the iter-
For

the sake of convenience, we define the following coef-

ation method, we rewrite the CPA conditions.

ficients (complex numbers) (see Appendix A in Ref.
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(8])-

A = 5:/9 (49)
T T N0 -RFRWA-RU) - KRFEW;
b 1
! (1-F”W1-FU) - RFW;
S./S
4 = <(1 F\V)(1-FUy) - FlFTW¢>(51
1
B £
v = \EwaRm—REw)

Employing the coefficients defined above we further

calculate the following coefficients by

Dy = ISFiAT . [1+F¢(2¢ “EM)]BT (53)
D, = -ISF A -[1+F(Z—-En)B, (54
By = (IS{US)F By — Ay[1+ Fi(Z, — En)}
(55)
E, = (IS{US)FyBy + A1+ Ft(Zy — Em)}.
(56)
Thus, the CPA conditions (47) and (48) are rewritten
as
E _ .’E(ET == EMDT)
¥ 1-z{l+ Dt + Fy[Ey — D+(Em — Z4)]}
(57)
S z(E, — EmDy)
* 1-z{1+D, +FJ[E, - D,(Ey -%,)]}
(58)

The iteration procedure is explained as follows. We
first calculate the initial values I" and XT" by us-
ing the exact results for paramagnetic and ferromag-
netic cases. Employing these £I" and X7*, F} and F)|
(7).
Ay, By, C, and D, are calculated by the definition.

Then, new ¥ and ¥ are obtained. The procedure is

are calculated by Eq. Furthermore, coefficients

iterated until the calculation converges.

6.4 Minimization method

Though the iteration approach is an effective method,
the calculation for the energy difference needs be more
accurate. For the purpose, we also perform the min-
imization method. We define f as a function of ¥+
and ¥ by

fo= |-a)td + i) + (1 —2)tf, +2(t)])]
(59)
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Once ¥4+ and ¥ are given, the calculation for f is
straightforward. Then, we can search for the pairs
of ¥4+ and ¥ which satisfy the condition (59) well
enough. The actual steps are as follows. When E%
and ¥ are given, we calculate f for the total 81(=
9 x 9) pairs of By and E; 3 = X1, 5 + (&d, £di)
and ¥ = ¥{ + (£d, £di). Here d(> 0) is a step unit
for search and i = /=1 is complex unit. If the value
of f for 24' and Ei is not the minimum among these
81 values, the X1 and X are replaced by ¥4 and ¥
which give the minimum for f. If the value of f for
EJT' and Zi is the minimum among these 81 values,
the step is taken as d/2. The procedure is continued

until the value of f diminishes small enough.

7 Results and Discussion

The iteration approach gives satisfactory result in
the case of the s-f model as shown in Ref. [8]. How-
ever, it does not converge well in the case of DMS
even though the classical spins are assumed for local-
ized spins [9]. This is because of the difficulty due
to the random distribution of magnetic ions incorpo-
rated in DMS. More precise calculations are needed
for the energy difference. Therefore, we will em-
ploy the minimization method together with the iter-
ation approach. Here, we note that the minimization
method and the iteration approach are used together
in our previous works in Ref. [4-7,10].

We have verified in the classical spin limit that the
dynamical CPA gives almost the same result as ob-
tained by the dynamical mean field theory (DMFT)
[10].
tractable than the DMFT and gives some important

However, the dynamical CPA is more easily

limiting cases.
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