{"created":"2023-05-15T12:25:49.876532+00:00","id":1143,"links":{},"metadata":{"_buckets":{"deposit":"838c8b8a-4bc1-489a-bced-7a836b940123"},"_deposit":{"created_by":4,"id":"1143","owners":[4],"pid":{"revision_id":0,"type":"depid","value":"1143"},"status":"published"},"_oai":{"id":"oai:kait.repo.nii.ac.jp:00001143","sets":["2:16:42:130"]},"author_link":[],"item_10002_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2016-03-20","bibliographicIssueDateType":"Issued"},"bibliographicPageEnd":"50","bibliographicPageStart":"43","bibliographicVolumeNumber":"40","bibliographic_titles":[{"bibliographic_title":"神奈川工科大学研究報告.B,理工学編"}]}]},"item_10002_description_19":{"attribute_name":"フォーマット","attribute_value_mlt":[{"subitem_description":"application/pdf","subitem_description_type":"Other"}]},"item_10002_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"Euler-Maclaurin summation formula can be regarded as error evaluation with the value of integration and the value of the numerical integration by the trapezoidal rule. Since the differential coefficients of the function were contained in the error evaluation formula, numerical integration was not performed until now using this. If the Taylor series method which is a kind of automatic differentiation is used in order to solve this problem, the differential coefficients are calculable with sufficient accuracy. If this method is used, it can be expected that an effective numerical-integration formula can be given. In this paper, it is shown that Euler-Maclaurin summation formula with the Taylor series method which give the accuracy differential coefficients becomes an effective numerical integration method as same as other leading numerical integration and equivalent grades. Since the Taylor series method can calculate the value of a function in the singular point of a function with the singularity on appearance with sufficient accuracy, it has the feature which can calculate the numerical integration to a function with the apparent singular with sufficient accuracy.","subitem_description_language":"en","subitem_description_type":"Abstract"}]},"item_10002_identifier_registration":{"attribute_name":"ID登録","attribute_value_mlt":[{"subitem_identifier_reg_text":"10.34411/00001136","subitem_identifier_reg_type":"JaLC"}]},"item_10002_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"神奈川工科大学"}]},"item_10002_source_id_11":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA12669200","subitem_source_identifier_type":"NCID"}]},"item_10002_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"21882878","subitem_source_identifier_type":"PISSN"}]},"item_10002_version_type_20":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"平山, 弘","creatorNameLang":"ja"},{"creatorName":"Hirayama, Hiroshi","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"加藤, 俊二","creatorNameLang":"ja"},{"creatorName":"Katoh, Shunji","creatorNameLang":"en"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2016-04-07"}],"displaytype":"detail","filename":"kkb-040-009.pdf","filesize":[{"value":"705.4 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"kkb-040-009.pdf","objectType":"fulltext","url":"https://kait.repo.nii.ac.jp/record/1143/files/kkb-040-009.pdf"},"version_id":"49690cc2-5896-4e84-bca9-14eee1411469"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"Euler-Maclaurin summation formula","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Taylor series","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"C++ program","subitem_subject_language":"en","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Euler-Maclaurinの総和公式を利用した数値積分","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Euler-Maclaurinの総和公式を利用した数値積分","subitem_title_language":"ja"},{"subitem_title":"Numerical Integration by Euler-Maclaurin Formula","subitem_title_language":"en"}]},"item_type_id":"10002","owner":"4","path":["130"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2020-11-24"},"publish_date":"2020-11-24","publish_status":"0","recid":"1143","relation_version_is_last":true,"title":["Euler-Maclaurinの総和公式を利用した数値積分"],"weko_creator_id":"4","weko_shared_id":-1},"updated":"2025-06-30T06:37:02.605712+00:00"}