{"created":"2023-05-15T12:25:51.471655+00:00","id":1167,"links":{},"metadata":{"_buckets":{"deposit":"eca40f32-17eb-40aa-b161-f4b343cc8c1e"},"_deposit":{"created_by":4,"id":"1167","owners":[4],"pid":{"revision_id":0,"type":"depid","value":"1167"},"status":"published"},"_oai":{"id":"oai:kait.repo.nii.ac.jp:00001167","sets":["2:16:43:89"]},"author_link":[],"item_10002_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2018-03-20","bibliographicIssueDateType":"Issued"},"bibliographicPageEnd":"51","bibliographicPageStart":"47","bibliographicVolumeNumber":"42","bibliographic_titles":[{"bibliographic_title":"神奈川工科大学研究報告.B,理工学編"}]}]},"item_10002_description_19":{"attribute_name":"フォーマット","attribute_value_mlt":[{"subitem_description":"application/pdf","subitem_description_type":"Other"}]},"item_10002_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"When an integral interval [a; b] of the integral with the bad condition is divided into two or more intervals and higher order numerical integral formula is applied every area and the whole one, good results are sometimes obtained with few sample points. In this paper, we show that you can get the condition to define convergence speed of numerical integration and partition method from numerical integration method of contour integral on complex plane.","subitem_description_language":"en","subitem_description_type":"Abstract"}]},"item_10002_identifier_registration":{"attribute_name":"ID登録","attribute_value_mlt":[{"subitem_identifier_reg_text":"10.34411/00001160","subitem_identifier_reg_type":"JaLC"}]},"item_10002_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"神奈川工科大学"}]},"item_10002_source_id_11":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA12669200","subitem_source_identifier_type":"NCID"}]},"item_10002_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"21882878","subitem_source_identifier_type":"PISSN"}]},"item_10002_version_type_20":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"平山, 弘","creatorNameLang":"ja"}]},{"creatorNames":[{"creatorName":"加藤, 俊二","creatorNameLang":"ja"}]},{"creatorNames":[{"creatorName":"Hirayama, Hiroshi","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"Katoh, Shunji","creatorNameLang":"en"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2018-04-06"}],"displaytype":"detail","filename":"kkb-042-010.pdf","filesize":[{"value":"687.3 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"kkb-042-010.pdf","objectType":"fulltext","url":"https://kait.repo.nii.ac.jp/record/1167/files/kkb-042-010.pdf"},"version_id":"95c01d94-3092-42bd-8eae-0b8a7a1dbdf8"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"Numerical Integration","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Division of Integral Interval","subitem_subject_language":"en","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"積分区間分割による数値積分の効率的な計算法","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"積分区間分割による数値積分の効率的な計算法","subitem_title_language":"ja"},{"subitem_title":"Efficient Computation Method of Numerical Integration by Integral Interval Division","subitem_title_language":"en"}]},"item_type_id":"10002","owner":"4","path":["89"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2020-11-24"},"publish_date":"2020-11-24","publish_status":"0","recid":"1167","relation_version_is_last":true,"title":["積分区間分割による数値積分の効率的な計算法"],"weko_creator_id":"4","weko_shared_id":-1},"updated":"2023-08-04T09:30:15.020369+00:00"}