{"created":"2023-05-15T12:35:56.461482+00:00","id":12117,"links":{},"metadata":{"_buckets":{"deposit":"7a58df51-2f36-464f-a22a-fd0d2aa8bb34"},"_deposit":{"created_by":4,"id":"12117","owners":[4],"pid":{"revision_id":0,"type":"depid","value":"12117"},"status":"published"},"_oai":{"id":"oai:kait.repo.nii.ac.jp:00012117","sets":["2:16:43:194"]},"author_link":[],"item_10002_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2021-03-01","bibliographicIssueDateType":"Issued"},"bibliographicPageEnd":"40","bibliographicPageStart":"35","bibliographicVolumeNumber":"45","bibliographic_titles":[{"bibliographic_title":"神奈川工科大学研究報告.B,理工学編"}]}]},"item_10002_description_19":{"attribute_name":"フォーマット","attribute_value_mlt":[{"subitem_description":"application/pdf","subitem_description_type":"Other"}]},"item_10002_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"Arithmetic operations and functions of Taylor series can be defined easily by FORTRAN 90 and C++ program language. Using this, it is shown that the asymptotic expansion of the following integral for oscillatory functions over the infinite interval\n∫0^∞ f(x)g(h(x))dx= ∫0^a f(x)g(h(x))dx + ∫a^∞ f(x)g(h(x))dx\n(where f(x) is slowl decaying function, g(x) is sin x or cos x, h(x) is monotonically increasing function.) The asymptotic expansion of the integral of the second term on the right side can be easily obtained by the substitution integration and the partial integration method. Evaluating this expansion gives an effective numerical integration method for this kind of integrals.","subitem_description_language":"en","subitem_description_type":"Abstract"}]},"item_10002_identifier_registration":{"attribute_name":"ID登録","attribute_value_mlt":[{"subitem_identifier_reg_text":"10.34411/00032045","subitem_identifier_reg_type":"JaLC"}]},"item_10002_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"神奈川工科大学"}]},"item_10002_source_id_11":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA12669200","subitem_source_identifier_type":"NCID"}]},"item_10002_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"21882878","subitem_source_identifier_type":"PISSN"}]},"item_10002_version_type_20":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"平山, 弘","creatorNameLang":"ja"}]},{"creatorNames":[{"creatorName":"小宮, 聖司","creatorNameLang":"ja"}]},{"creatorNames":[{"creatorName":"加藤, 俊二","creatorNameLang":"ja"}]},{"creatorNames":[{"creatorName":"Hirayama, Hiroshi","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"Komiya, Seiji","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"Katoh, Shunji","creatorNameLang":"en"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2021-05-10"}],"displaytype":"detail","filename":"kkb-045-005.pdf","filesize":[{"value":"550.3 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"kkb-045-005.pdf","objectType":"fulltext","url":"https://kait.repo.nii.ac.jp/record/12117/files/kkb-045-005.pdf"},"version_id":"8cd8a78b-7c88-4020-8b95-01e9123abb6a"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"Taylor series","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"integral for oscillatory functions over the infinite interval","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"High Precision number","subitem_subject_language":"en","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Taylor展開を利用した置換積分による無限区間振動型関数の数値積分法","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Taylor展開を利用した置換積分による無限区間振動型関数の数値積分法","subitem_title_language":"ja"},{"subitem_title":"Numerical integration of oscillatory functions over Infinite interval by Integration by substitution using Taylor series","subitem_title_language":"en"}]},"item_type_id":"10002","owner":"4","path":["194"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2021-05-10"},"publish_date":"2021-05-10","publish_status":"0","recid":"12117","relation_version_is_last":true,"title":["Taylor展開を利用した置換積分による無限区間振動型関数の数値積分法"],"weko_creator_id":"4","weko_shared_id":-1},"updated":"2023-08-04T09:33:18.372074+00:00"}