{"created":"2023-05-15T12:35:57.238366+00:00","id":12134,"links":{},"metadata":{"_buckets":{"deposit":"5e7e204e-f838-4588-b890-9db8f4fa373e"},"_deposit":{"created_by":4,"id":"12134","owners":[4],"pid":{"revision_id":0,"type":"depid","value":"12134"},"status":"published"},"_oai":{"id":"oai:kait.repo.nii.ac.jp:00012134","sets":["2:16:43:196"]},"author_link":[],"item_10002_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2022-03-01","bibliographicIssueDateType":"Issued"},"bibliographicPageEnd":"40","bibliographicPageStart":"31","bibliographicVolumeNumber":"46","bibliographic_titles":[{"bibliographic_title":"神奈川工科大学研究報告.B,理工学編"}]}]},"item_10002_description_19":{"attribute_name":"フォーマット","attribute_value_mlt":[{"subitem_description":"application/pdf","subitem_description_type":"Other"}]},"item_10002_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"Numerical scheme for nonlinear hyperbolic evolution equations is made based on the implicit Runge–Kutta method and the Fourier spectral method. The detail discretization processes are discussed in case of one-dimensional Klein-Gordon equations. In conclusion, a numerical scheme with the third-order accuracy is presented. The order of total calculation cost is equal to O(N log2 N). As benchmark results, the relation between the numerical precision and the discretization unit size is demonstrated.","subitem_description_language":"en","subitem_description_type":"Abstract"}]},"item_10002_identifier_registration":{"attribute_name":"ID登録","attribute_value_mlt":[{"subitem_identifier_reg_text":"10.34411/00032062","subitem_identifier_reg_type":"JaLC"}]},"item_10002_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"神奈川工科大学"}]},"item_10002_source_id_11":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA12669200","subitem_source_identifier_type":"NCID"}]},"item_10002_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"21882878","subitem_source_identifier_type":"PISSN"}]},"item_10002_version_type_20":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"岩田, 順敬","creatorNameLang":"ja"}]},{"creatorNames":[{"creatorName":"武井, 康浩","creatorNameLang":"ja"}]},{"creatorNames":[{"creatorName":"Iwata, Yoritaka","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"Takei, Yasuhiro","creatorNameLang":"en"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2022-04-28"}],"displaytype":"detail","filename":"kkb-046-005.pdf","filesize":[{"value":"995.0 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"kkb-046-005.pdf","objectType":"fulltext","url":"https://kait.repo.nii.ac.jp/record/12134/files/kkb-046-005.pdf"},"version_id":"6a2c7163-be79-4966-a63b-a43d41fcbb6d"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"Implicit Runge–Kutta method","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Fourier spectral method","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"High-precision numerical scheme","subitem_subject_language":"en","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"陰的Runge-Kutta法およびスペクトル法による非線形双曲型発展方程式の数値解法","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"陰的Runge-Kutta法およびスペクトル法による非線形双曲型発展方程式の数値解法","subitem_title_language":"ja"},{"subitem_title":"Numerical scheme based on the implicit Runge–Kutta method and spectral method for calculating nonlinear hyperbolic evolution equations","subitem_title_language":"en"}]},"item_type_id":"10002","owner":"4","path":["196"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2022-04-28"},"publish_date":"2022-04-28","publish_status":"0","recid":"12134","relation_version_is_last":true,"title":["陰的Runge-Kutta法およびスペクトル法による非線形双曲型発展方程式の数値解法"],"weko_creator_id":"4","weko_shared_id":-1},"updated":"2023-08-04T09:34:17.747286+00:00"}