{"created":"2023-05-15T12:25:32.617449+00:00","id":838,"links":{},"metadata":{"_buckets":{"deposit":"70a192e8-4832-491e-bc27-c4e1a79d3d65"},"_deposit":{"created_by":4,"id":"838","owners":[4],"pid":{"revision_id":0,"type":"depid","value":"838"},"status":"published"},"_oai":{"id":"oai:kait.repo.nii.ac.jp:00000838","sets":["2:16:41:112"]},"author_link":[],"item_10002_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"1998-03-20","bibliographicIssueDateType":"Issued"},"bibliographicPageEnd":"44","bibliographicPageStart":"39","bibliographicVolumeNumber":"22","bibliographic_titles":[{"bibliographic_title":"神奈川工科大学研究報告.B,理工学編"}]}]},"item_10002_description_19":{"attribute_name":"フォーマット","attribute_value_mlt":[{"subitem_description":"application/pdf","subitem_description_type":"Other"}]},"item_10002_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"The arithmetic operations and functions of Taylor series can be defined by C++ language. The\nfunctions which consist of arithmetic operations,p re-defined functions and conditional statements can\nbe expanded in Taylor series.U sing this methods,th e solution of an ordinary differential equation can\nbe expanded in Taylor series and expanded up to arbitrary order,so the calculation formula of arbitrary\norder can be used instead of Runge-Kutta formula.T aylor series can be used for the evaluations of the\nerrors and the optimal step size within given error allowance easily. In addition, we can transform\nTaylor series into Pade series, which give arbitrary order, high precision and A-stable fornmla foi\nsolving ordinary differential equation numerically","subitem_description_language":"en","subitem_description_type":"Abstract"}]},"item_10002_identifier_registration":{"attribute_name":"ID登録","attribute_value_mlt":[{"subitem_identifier_reg_text":"10.34411/00000831","subitem_identifier_reg_type":"JaLC"}]},"item_10002_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"神奈川工科大学"}]},"item_10002_source_id_11":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN10074179","subitem_source_identifier_type":"NCID"}]},"item_10002_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"09161902","subitem_source_identifier_type":"PISSN"}]},"item_10002_version_type_20":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"平山, 弘","creatorNameLang":"ja"}]},{"creatorNames":[{"creatorName":"Hirayama, Hiroshi","creatorNameLang":"en"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2010-02-03"}],"displaytype":"detail","filename":"kkb-022-007.pdf","filesize":[{"value":"2.9 MB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"kkb-022-007.pdf","objectType":"fulltext","url":"https://kait.repo.nii.ac.jp/record/838/files/kkb-022-007.pdf"},"version_id":"247c7777-922e-4625-b59c-76700218e875"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"Taylor series,C ++ language,p ower series,A- Stable,or dinary differential equatio","subitem_subject_language":"en","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Taylor展開法による常微分方程式の数値解法","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Taylor展開法による常微分方程式の数値解法","subitem_title_language":"ja"},{"subitem_title":"Numerical Solving for Ordinary differential Equations by Taylor series","subitem_title_language":"en"}]},"item_type_id":"10002","owner":"4","path":["112"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2020-11-24"},"publish_date":"2020-11-24","publish_status":"0","recid":"838","relation_version_is_last":true,"title":["Taylor展開法による常微分方程式の数値解法"],"weko_creator_id":"4","weko_shared_id":-1},"updated":"2023-08-18T03:24:46.649541+00:00"}